Invariants
This isogeny class is simple but not geometrically simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$5053$ |
$25532809$ |
$128100118900$ |
$646259932819449$ |
$3255243552374136853$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$72$ |
$5064$ |
$357912$ |
$25431604$ |
$1804229352$ |
$128099953878$ |
$9095120158392$ |
$645753434449444$ |
$45848500718449032$ |
$3255243553738392504$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 93 curves (of which all are hyperelliptic):
- $y^2=48 x^6+9 x^5+15 x^4+48 x^2+54 x+14$
- $y^2=52 x^6+63 x^5+34 x^4+52 x^2+23 x+27$
- $y^2=21 x^6+38 x^5+32 x^4+22 x^3+17 x^2+35 x+1$
- $y^2=5 x^6+53 x^5+11 x^4+12 x^3+48 x^2+32 x+7$
- $y^2=6 x^6+40 x^5+20 x^4+25 x^3+25 x^2+44$
- $y^2=42 x^6+67 x^5+69 x^4+33 x^3+33 x^2+24$
- $y^2=40 x^6+3 x^5+55 x^4+69 x^3+14 x^2+46 x+33$
- $y^2=38 x^6+8 x^5+59 x^4+32 x^3+18 x^2+63 x+23$
- $y^2=57 x^6+56 x^5+32 x^4+31 x^3+2 x^2+14 x+53$
- $y^2=21 x^6+30 x^5+44 x^4+38 x^3+43 x^2+66 x+35$
- $y^2=67 x^6+2 x^5+2 x^4+42 x^3+50 x^2+56 x+48$
- $y^2=43 x^6+14 x^5+14 x^4+10 x^3+66 x^2+37 x+52$
- $y^2=68 x^6+48 x^5+10 x^4+38 x^3+2 x^2+33 x+46$
- $y^2=50 x^6+52 x^5+70 x^4+53 x^3+14 x^2+18 x+38$
- $y^2=28 x^6+30 x^5+69 x^4+24 x^3+14 x^2+18 x+47$
- $y^2=54 x^6+68 x^5+57 x^4+26 x^3+27 x^2+55 x+45$
- $y^2=17 x^6+10 x^5+54 x^4+70 x^3+23 x^2+28 x+24$
- $y^2=48 x^6+70 x^5+23 x^4+64 x^3+19 x^2+54 x+26$
- $y^2=14 x^6+12 x^5+34 x^4+19 x^3+3 x^2+67 x+67$
- $y^2=27 x^6+13 x^5+25 x^4+62 x^3+21 x^2+43 x+43$
- and 73 more
- $y^2=64 x^6+29 x^5+68 x^4+49 x^3+64 x^2+67 x+44$
- $y^2=67 x^6+12 x^5+45 x^4+63 x^3+38 x^2+40 x+29$
- $y^2=10 x^6+16 x^5+18 x^4+8 x^3+49 x^2+68 x+8$
- $y^2=70 x^6+41 x^5+55 x^4+56 x^3+59 x^2+50 x+56$
- $y^2=10 x^6+28 x^5+66 x^4+52 x^3+15 x^2+34 x+25$
- $y^2=70 x^6+54 x^5+36 x^4+9 x^3+34 x^2+25 x+33$
- $y^2=39 x^6+60 x^5+65 x^4+38 x^3+53 x^2+12 x+34$
- $y^2=60 x^6+65 x^5+29 x^4+53 x^3+16 x^2+13 x+25$
- $y^2=7 x^6+60 x^5+8 x^4+46 x^3+54 x^2+17 x+32$
- $y^2=49 x^6+65 x^5+56 x^4+38 x^3+23 x^2+48 x+11$
- $y^2=x^6+17 x^5+45 x^4+40 x^3+10 x^2+59 x+45$
- $y^2=7 x^6+48 x^5+31 x^4+67 x^3+70 x^2+58 x+31$
- $y^2=18 x^6+39 x^5+17 x^4+37 x^3+70 x^2+65 x+43$
- $y^2=55 x^6+60 x^5+48 x^4+46 x^3+64 x^2+29 x+17$
- $y^2=58 x^6+52 x^5+42 x^4+69 x^3+31 x^2+18 x+4$
- $y^2=51 x^6+9 x^5+10 x^4+57 x^3+4 x^2+55 x+28$
- $y^2=6 x^6+20 x^5+2 x^4+59 x^3+24 x^2+30 x+22$
- $y^2=5 x^6+7 x^5+56 x^4+12 x^3+3 x^2+33 x+24$
- $y^2=35 x^6+49 x^5+37 x^4+13 x^3+21 x^2+18 x+26$
- $y^2=70 x^6+18 x^5+42 x^4+55 x^3+23 x^2+38 x+67$
- $y^2=64 x^6+55 x^5+10 x^4+30 x^3+19 x^2+53 x+43$
- $y^2=53 x^6+29 x^5+23 x^4+16 x^3+29 x^2+64 x+21$
- $y^2=16 x^6+61 x^5+19 x^4+41 x^3+61 x^2+22 x+5$
- $y^2=8 x^6+70 x^5+42 x^4+50 x^3+23 x^2+32 x+52$
- $y^2=56 x^6+64 x^5+10 x^4+66 x^3+19 x^2+11 x+9$
- $y^2=17 x^6+11 x^5+13 x^4+55 x^3+61 x^2+9 x+18$
- $y^2=32 x^6+17 x^5+47 x^4+5 x^3+9 x^2+27 x+43$
- $y^2=11 x^6+48 x^5+45 x^4+35 x^3+63 x^2+47 x+17$
- $y^2=31 x^6+28 x^5+29 x^4+53 x^3+70 x^2+3 x+42$
- $y^2=4 x^6+54 x^5+61 x^4+16 x^3+64 x^2+21 x+10$
- $y^2=31 x^6+7 x^5+46 x^4+30 x^3+40 x^2+65 x+53$
- $y^2=20 x^6+37 x^5+66 x^4+57 x^3+27 x^2+36 x+61$
- $y^2=69 x^6+46 x^5+36 x^4+44 x^3+47 x^2+39 x+1$
- $y^2=69 x^6+54 x^5+60 x^4+40 x^3+x^2+5 x+31$
- $y^2=57 x^6+23 x^5+65 x^4+67 x^3+7 x^2+35 x+4$
- $y^2=63 x^6+21 x^5+34 x^4+48 x^3+29 x^2+47 x+23$
- $y^2=15 x^6+5 x^5+25 x^4+52 x^3+61 x^2+45 x+19$
- $y^2=31 x^6+59 x^5+49 x^4+50 x^3+46 x^2+8 x+63$
- $y^2=37 x^6+11 x^5+67 x^4+28 x^3+56 x^2+36 x+56$
- $y^2=46 x^6+6 x^5+43 x^4+54 x^3+37 x^2+39 x+37$
- $y^2=2 x^6+13 x^5+29 x^4+24 x^3+8 x^2+52 x+2$
- $y^2=14 x^6+20 x^5+61 x^4+26 x^3+56 x^2+9 x+14$
- $y^2=15 x^6+61 x^5+18 x^4+9 x^3+19 x^2+53 x+15$
- $y^2=27 x^6+69 x^5+x^4+66 x^3+64 x^2+17 x+34$
- $y^2=47 x^6+57 x^5+7 x^4+36 x^3+22 x^2+48 x+25$
- $y^2=32 x^6+41 x^5+32 x^4+55 x^3+36 x^2+31 x+62$
- $y^2=11 x^6+3 x^5+11 x^4+30 x^3+39 x^2+4 x+8$
- $y^2=32 x^6+59 x^5+21 x^4+37 x^3+68 x^2+50 x+56$
- $y^2=12 x^6+37 x^5+9 x^4+9 x^3+33 x^2+18 x+64$
- $y^2=13 x^6+46 x^5+63 x^4+63 x^3+18 x^2+55 x+22$
- $y^2=59 x^6+49 x^5+47 x^4+58 x^3+20 x^2+25 x+16$
- $y^2=58 x^6+59 x^5+45 x^4+51 x^3+69 x^2+33 x+41$
- $y^2=68 x^6+9 x^5+51 x^4+17 x^3+64 x+2$
- $y^2=50 x^6+63 x^5+2 x^4+48 x^3+22 x+14$
- $y^2=56 x^6+59 x^5+45 x^4+10 x^3+32 x^2+28 x+47$
- $y^2=17 x^6+x^5+19 x^4+41 x^3+59 x^2+2 x+23$
- $y^2=48 x^6+7 x^5+62 x^4+3 x^3+58 x^2+14 x+19$
- $y^2=63 x^6+29 x^5+22 x^4+28 x^3+17 x^2+68 x+19$
- $y^2=15 x^6+61 x^5+12 x^4+54 x^3+48 x^2+50 x+62$
- $y^2=36 x^6+25 x^5+6 x^4+31 x^3+10 x^2+31 x+33$
- $y^2=26 x^6+49 x^5+70 x^4+3 x^3+49 x^2+66 x+56$
- $y^2=22 x^6+7 x^5+14 x^4+6 x^3+59 x^2+62 x+30$
- $y^2=12 x^6+49 x^5+27 x^4+42 x^3+58 x^2+8 x+68$
- $y^2=31 x^6+40 x^5+31 x^4+13 x^3+40 x^2+x+3$
- $y^2=4 x^6+67 x^5+4 x^4+20 x^3+67 x^2+7 x+21$
- $y^2=68 x^6+21 x^5+38 x^4+38 x^3+40 x^2+40 x+69$
- $y^2=50 x^6+5 x^5+53 x^4+53 x^3+67 x^2+67 x+57$
- $y^2=18 x^6+5 x^5+58 x^4+55 x^3+25 x^2+17 x+30$
- $y^2=55 x^6+35 x^5+51 x^4+30 x^3+33 x^2+48 x+68$
- $y^2=28 x^6+39 x^5+13 x^4+9 x^3+64 x^2+8 x+48$
- $y^2=54 x^6+60 x^5+20 x^4+63 x^3+22 x^2+56 x+52$
- $y^2=22 x^6+56 x^5+54 x^4+30 x^2+24 x+31$
- $y^2=12 x^6+37 x^5+23 x^4+68 x^2+26 x+4$
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$
Endomorphism algebra over $\overline{\F}_{71}$
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
2.71.a_al | $4$ | (not in LMFDB) |