L(s) = 1 | + 2-s + 3-s + 4-s − 8·5-s + 6-s + 8-s + 9-s − 8·10-s + 12-s − 8·15-s + 16-s + 18-s − 8·20-s − 12·23-s + 24-s + 38·25-s + 27-s + 20·29-s − 8·30-s + 32-s + 36-s − 8·40-s + 8·43-s − 8·45-s − 12·46-s − 4·47-s + 48-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s − 3.57·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s − 2.52·10-s + 0.288·12-s − 2.06·15-s + 1/4·16-s + 0.235·18-s − 1.78·20-s − 2.50·23-s + 0.204·24-s + 38/5·25-s + 0.192·27-s + 3.71·29-s − 1.46·30-s + 0.176·32-s + 1/6·36-s − 1.26·40-s + 1.21·43-s − 1.19·45-s − 1.76·46-s − 0.583·47-s + 0.144·48-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 418176 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 418176 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.239518620901196099696917715149, −7.76468949407227890278331338099, −7.72339303053252541131209387915, −7.22439214684360967772263804706, −6.46917181705411800265373292912, −6.41339833010794299582499150983, −5.35095261869222727266089892863, −4.50249250702361606334840833954, −4.31442539583717353216143069554, −4.25842178547984493307347569445, −3.34833436263269527102959669443, −3.19368686523870503450682170613, −2.49691763110340121310810466350, −1.09804741173349039454069806686, 0,
1.09804741173349039454069806686, 2.49691763110340121310810466350, 3.19368686523870503450682170613, 3.34833436263269527102959669443, 4.25842178547984493307347569445, 4.31442539583717353216143069554, 4.50249250702361606334840833954, 5.35095261869222727266089892863, 6.41339833010794299582499150983, 6.46917181705411800265373292912, 7.22439214684360967772263804706, 7.72339303053252541131209387915, 7.76468949407227890278331338099, 8.239518620901196099696917715149