L(s) = 1 | + 3-s + 4-s − 8·5-s − 2·7-s + 9-s + 12-s − 8·15-s + 16-s − 4·17-s − 8·20-s − 2·21-s + 38·25-s + 27-s − 2·28-s + 16·35-s + 36-s − 4·37-s + 4·41-s + 8·43-s − 8·45-s − 4·47-s + 48-s − 3·49-s − 4·51-s − 8·60-s − 2·63-s + 64-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/2·4-s − 3.57·5-s − 0.755·7-s + 1/3·9-s + 0.288·12-s − 2.06·15-s + 1/4·16-s − 0.970·17-s − 1.78·20-s − 0.436·21-s + 38/5·25-s + 0.192·27-s − 0.377·28-s + 2.70·35-s + 1/6·36-s − 0.657·37-s + 0.624·41-s + 1.21·43-s − 1.19·45-s − 0.583·47-s + 0.144·48-s − 3/7·49-s − 0.560·51-s − 1.03·60-s − 0.251·63-s + 1/8·64-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 640332 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640332 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.894665353994413246373453678017, −7.72339303053252541131209387915, −7.43410747209398468048949834914, −7.05815178154409054619733639291, −6.46917181705411800265373292912, −6.19680984986373070636610717745, −5.07383671255390526614984884865, −4.60008247455863199267972007430, −4.25842178547984493307347569445, −3.70926567549893465484002151185, −3.34833436263269527102959669443, −3.02728446887365555962031302193, −2.19176405068074647635052830920, −0.838756699131348564852559082318, 0,
0.838756699131348564852559082318, 2.19176405068074647635052830920, 3.02728446887365555962031302193, 3.34833436263269527102959669443, 3.70926567549893465484002151185, 4.25842178547984493307347569445, 4.60008247455863199267972007430, 5.07383671255390526614984884865, 6.19680984986373070636610717745, 6.46917181705411800265373292912, 7.05815178154409054619733639291, 7.43410747209398468048949834914, 7.72339303053252541131209387915, 7.894665353994413246373453678017