Base field \(\Q(\sqrt{21}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 5 \); class number \(1\).
Rank
Rank: \( 1 \)Isogeny matrix
\(\left(\begin{array}{rrrr} 1 & 5 & 10 & 2 \\ 5 & 1 & 2 & 10 \\ 10 & 2 & 1 & 5 \\ 2 & 10 & 5 & 1 \end{array}\right)\)
Isogeny graph
Elliptic curves in class 1452.1-i over \(\Q(\sqrt{21}) \)
Isogeny class 1452.1-i contains 4 curves linked by isogenies of degrees dividing 10.