L(s) = 1 | + 2·3-s + 9-s − 2·13-s + 12·17-s − 6·23-s + 4·25-s − 4·27-s − 4·39-s − 8·43-s + 2·49-s + 24·51-s − 6·53-s − 4·61-s − 12·69-s + 8·75-s − 10·79-s − 11·81-s − 6·101-s − 20·103-s + 24·107-s + 12·113-s − 2·117-s − 14·121-s + 127-s − 16·129-s + 131-s + 137-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 1/3·9-s − 0.554·13-s + 2.91·17-s − 1.25·23-s + 4/5·25-s − 0.769·27-s − 0.640·39-s − 1.21·43-s + 2/7·49-s + 3.36·51-s − 0.824·53-s − 0.512·61-s − 1.44·69-s + 0.923·75-s − 1.12·79-s − 1.22·81-s − 0.597·101-s − 1.97·103-s + 2.32·107-s + 1.12·113-s − 0.184·117-s − 1.27·121-s + 0.0887·127-s − 1.40·129-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 24336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24336 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.711774644\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.711774644\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.36539185412559528646758299291, −10.09361909012307865197488274015, −9.681794127214448782622884674313, −9.108449837706662154171637653416, −8.464821871272362020644116507815, −7.941297514258312253733864637354, −7.68729009799829749833130126622, −7.05205847457425997762496795297, −6.15498128319587771959340541202, −5.56268779024292319750686478621, −4.94385159638334824124403883982, −3.94105126425491521793657414786, −3.30728105064987180690084046019, −2.74276741871994897308823828763, −1.56981320253891731544646003058,
1.56981320253891731544646003058, 2.74276741871994897308823828763, 3.30728105064987180690084046019, 3.94105126425491521793657414786, 4.94385159638334824124403883982, 5.56268779024292319750686478621, 6.15498128319587771959340541202, 7.05205847457425997762496795297, 7.68729009799829749833130126622, 7.941297514258312253733864637354, 8.464821871272362020644116507815, 9.108449837706662154171637653416, 9.681794127214448782622884674313, 10.09361909012307865197488274015, 10.36539185412559528646758299291