L(s) = 1 | − 2-s + 4-s + 2·7-s − 8-s + 9-s + 2·11-s − 2·14-s + 16-s − 18-s − 2·22-s − 4·23-s − 2·25-s + 2·28-s + 6·29-s − 32-s + 36-s − 2·37-s + 4·43-s + 2·44-s + 4·46-s − 3·49-s + 2·50-s − 10·53-s − 2·56-s − 6·58-s + 2·63-s + 64-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.755·7-s − 0.353·8-s + 1/3·9-s + 0.603·11-s − 0.534·14-s + 1/4·16-s − 0.235·18-s − 0.426·22-s − 0.834·23-s − 2/5·25-s + 0.377·28-s + 1.11·29-s − 0.176·32-s + 1/6·36-s − 0.328·37-s + 0.609·43-s + 0.301·44-s + 0.589·46-s − 3/7·49-s + 0.282·50-s − 1.37·53-s − 0.267·56-s − 0.787·58-s + 0.251·63-s + 1/8·64-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1707552 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1707552 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.63520934784353764045914817195, −7.28844652514577506426838994433, −6.88662858411620937049278017415, −6.39901022084612047489984833222, −5.89331344552768592463477664762, −5.70065133313962609323012091723, −4.76848266992381879176006853234, −4.65602487391672324701510739492, −4.04876198895936488180353403207, −3.50295953105173701545459249679, −2.87437841864846219496524500527, −2.28159645018256982561324225080, −1.56588667258821092141210086851, −1.22146856538236981222675445965, 0,
1.22146856538236981222675445965, 1.56588667258821092141210086851, 2.28159645018256982561324225080, 2.87437841864846219496524500527, 3.50295953105173701545459249679, 4.04876198895936488180353403207, 4.65602487391672324701510739492, 4.76848266992381879176006853234, 5.70065133313962609323012091723, 5.89331344552768592463477664762, 6.39901022084612047489984833222, 6.88662858411620937049278017415, 7.28844652514577506426838994433, 7.63520934784353764045914817195