L(s) = 1 | − 2-s + 4-s − 8-s − 5·9-s + 2·13-s + 16-s − 6·17-s + 5·18-s − 2·26-s − 32-s + 6·34-s − 5·36-s − 6·37-s + 4·41-s + 5·49-s + 2·52-s − 3·53-s + 8·61-s + 64-s − 6·68-s + 5·72-s − 3·73-s + 6·74-s + 16·81-s − 4·82-s + 15·89-s − 97-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.353·8-s − 5/3·9-s + 0.554·13-s + 1/4·16-s − 1.45·17-s + 1.17·18-s − 0.392·26-s − 0.176·32-s + 1.02·34-s − 5/6·36-s − 0.986·37-s + 0.624·41-s + 5/7·49-s + 0.277·52-s − 0.412·53-s + 1.02·61-s + 1/8·64-s − 0.727·68-s + 0.589·72-s − 0.351·73-s + 0.697·74-s + 16/9·81-s − 0.441·82-s + 1.58·89-s − 0.101·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1220000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1220000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.88713410606036734952344793042, −7.41875765418937052134327717389, −6.97722194245656799479471415358, −6.46263841077439735764717258195, −6.08638513460703152167995485883, −5.78503129155512653732462171939, −5.16825815721256337110981670806, −4.74093668651875347469424049789, −4.05779300570008132450851922052, −3.46617854501668295847895907085, −3.03131079421991742586705847213, −2.30874140983669766043679977641, −2.01078346838779193065655282775, −0.888588884432719060629012098436, 0,
0.888588884432719060629012098436, 2.01078346838779193065655282775, 2.30874140983669766043679977641, 3.03131079421991742586705847213, 3.46617854501668295847895907085, 4.05779300570008132450851922052, 4.74093668651875347469424049789, 5.16825815721256337110981670806, 5.78503129155512653732462171939, 6.08638513460703152167995485883, 6.46263841077439735764717258195, 6.97722194245656799479471415358, 7.41875765418937052134327717389, 7.88713410606036734952344793042