Invariants
This isogeny class is not simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$1500$ |
$2754000$ |
$4700461500$ |
$7992152064000$ |
$13422612713437500$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$38$ |
$1638$ |
$68198$ |
$2828318$ |
$115855798$ |
$4750093638$ |
$194755862038$ |
$7984927070398$ |
$327381962933318$ |
$13422659728370598$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 90 curves (of which all are hyperelliptic):
- $y^2=19 x^6+19 x^5+20 x^4+12 x^3+20 x^2+19 x+19$
- $y^2=25 x^6+33 x^5+16 x^4+13 x^3+40 x^2+9 x+20$
- $y^2=22 x^6+22 x^5+2 x^4+10 x^3+3 x^2+8 x+30$
- $y^2=9 x^6+31 x^5+32 x^4+8 x^3+3 x^2+33 x+11$
- $y^2=25 x^6+12 x^5+29 x^4+30 x^3+21 x^2+5 x+36$
- $y^2=21 x^6+28 x^5+19 x^4+7 x^2+35 x+29$
- $y^2=9 x^6+10 x^5+33 x^4+2 x^3+34 x^2+31 x+33$
- $y^2=30 x^6+32 x^5+9 x^4+15 x^2+33 x+13$
- $y^2=27 x^6+2 x^5+25 x^4+19 x^3+26 x^2+23 x+26$
- $y^2=21 x^5+34 x^3+8 x^2+29 x+10$
- $y^2=38 x^6+24 x^5+38 x^4+2 x^3+12 x^2+16 x+31$
- $y^2=29 x^6+14 x^5+12 x^4+18 x^3+28 x^2+5 x+28$
- $y^2=9 x^6+15 x^5+35 x^4+15 x^3+14 x^2+38 x+5$
- $y^2=7 x^6+8 x^5+20 x^4+38 x^3+28 x^2+14 x+25$
- $y^2=12 x^6+18 x^5+40 x^4+13 x^3+12 x^2+24 x+22$
- $y^2=35 x^6+5 x^5+20 x^4+5 x^3+38 x^2+39 x+6$
- $y^2=22 x^6+15 x^5+31 x^4+36 x^3+18 x^2+16 x+22$
- $y^2=21 x^6+21 x^5+12 x^4+10 x^3+12 x^2+21 x+21$
- $y^2=17 x^6+7 x^5+6 x^4+28 x^3+38 x^2+12 x+3$
- $y^2=8 x^6+28 x^5+6 x^4+11 x^3+34 x^2+30 x+32$
- and 70 more
- $y^2=34 x^6+14 x^4+30 x^3+35 x^2+14 x+8$
- $y^2=13 x^6+39 x^5+23 x^4+29 x^3+37 x^2+27 x+28$
- $y^2=14 x^6+22 x^5+36 x^4+22 x^3+18 x^2+24 x+23$
- $y^2=4 x^6+23 x^5+16 x^4+11 x^3+8 x^2+15 x+29$
- $y^2=11 x^6+21 x^4+29 x^3+16 x^2+14 x+38$
- $y^2=35 x^6+9 x^5+x^4+x^3+11 x^2+21 x+18$
- $y^2=40 x^6+40 x^5+22 x^4+22 x^3+35 x^2+21 x+28$
- $y^2=11 x^6+11 x^5+35 x^4+24 x^3+9 x^2+18 x+31$
- $y^2=23 x^6+3 x^5+10 x^4+16 x^3+5 x^2+8$
- $y^2=25 x^6+32 x^5+7 x^4+2 x^3+3 x^2+36 x+5$
- $y^2=15 x^6+23 x^5+24 x^4+17 x^3+15 x^2+36 x+12$
- $y^2=7 x^6+2 x^5+29 x^4+4 x^3+9 x^2+22 x+33$
- $y^2=10 x^6+36 x^5+26 x^4+23 x^3+11 x^2+25 x+9$
- $y^2=15 x^6+32 x^5+23 x^4+12 x^3+10 x^2+28 x+38$
- $y^2=15 x^6+27 x^5+6 x^4+38 x^3+36 x^2+x+2$
- $y^2=28 x^6+35 x^5+34 x^4+38 x^3+21 x^2+31 x+35$
- $y^2=30 x^6+11 x^5+27 x^4+39 x^3+9 x^2+25 x+29$
- $y^2=13 x^6+32 x^5+18 x^4+35 x^3+18 x^2+32 x+13$
- $y^2=28 x^6+16 x^5+36 x^4+17 x^3+27 x^2+23 x+5$
- $y^2=21 x^6+9 x^5+29 x^4+19 x^3+17 x^2+5 x+14$
- $y^2=11 x^6+4 x^5+26 x^4+39 x^3+14 x^2+31 x+12$
- $y^2=x^6+32 x^5+32 x^3+32 x+1$
- $y^2=31 x^6+27 x^5+19 x^4+3 x^3+32 x^2+10 x+29$
- $y^2=2 x^6+23 x^5+38 x^4+39 x^3+9 x^2+36 x+5$
- $y^2=7 x^5+22 x^4+38 x^3+35 x^2+17 x+35$
- $y^2=8 x^6+9 x^5+24 x^4+25 x^3+8 x^2+30 x+2$
- $y^2=40 x^6+26 x^5+33 x^4+36 x^3+25 x^2+35 x+28$
- $y^2=14 x^6+8 x^5+27 x^4+25 x^3+29 x^2+24 x+25$
- $y^2=34 x^6+8 x^5+4 x^4+37 x^3+21 x^2+6 x+29$
- $y^2=29 x^6+11 x^5+4 x^4+37 x^3+4 x^2+11 x+29$
- $y^2=7 x^6+18 x^5+8 x^4+2 x^3+34 x^2+25 x+39$
- $y^2=4 x^6+15 x^5+31 x^4+2 x^3+12 x^2+11 x+35$
- $y^2=39 x^6+18 x^5+29 x^4+20 x^3+35 x^2+23 x+19$
- $y^2=37 x^6+3 x^5+17 x^4+12 x^3+27 x^2+10 x+3$
- $y^2=33 x^6+31 x^5+28 x^4+20 x^3+7 x^2+17 x+29$
- $y^2=18 x^6+19 x^5+30 x^4+27 x^3+6 x^2+34 x+26$
- $y^2=34 x^6+12 x^5+38 x^4+15 x^3+21 x^2+35 x+2$
- $y^2=22 x^6+39 x^5+12 x^4+5 x^3+38 x^2+22 x+20$
- $y^2=12 x^6+32 x^5+21 x^4+23 x^3+16 x^2+28 x+9$
- $y^2=24 x^6+6 x^5+4 x^4+13 x^3+40 x^2+19 x+5$
- $y^2=35 x^6+x^5+31 x^4+10 x^3+18 x^2+x+10$
- $y^2=9 x^6+39 x^5+31 x^4+13 x^3+13 x^2+37 x+18$
- $y^2=25 x^6+39 x^5+6 x^4+6 x^3+5 x^2+24 x+32$
- $y^2=23 x^6+28 x^5+4 x^4+x^3+29 x^2+19 x+30$
- $y^2=16 x^6+33 x^5+39 x^4+3 x^3+35 x^2+15 x+36$
- $y^2=17 x^6+33 x^5+17 x^4+13 x^3+29 x^2+39 x+38$
- $y^2=34 x^6+20 x^5+14 x^4+x^3+2 x^2+8 x+5$
- $y^2=34 x^6+13 x^5+33 x^4+28 x^3+10 x^2+13 x+16$
- $y^2=28 x^6+30 x^5+40 x^4+23 x^3+4 x^2+21 x+2$
- $y^2=29 x^6+22 x^5+12 x^4+9 x^3+3 x^2+27 x+28$
- $y^2=5 x^6+14 x^5+10 x^4+13 x^3+28 x^2+14 x+1$
- $y^2=2 x^6+x^5+2 x^4+22 x^3+37 x^2+23 x+8$
- $y^2=38 x^6+7 x^5+31 x^4+35 x^3+19 x^2+3 x+15$
- $y^2=39 x^6+x^5+31 x^4+31 x^3+7 x+21$
- $y^2=34 x^6+35 x^5+31 x^4+19 x^3+16 x^2+4 x+18$
- $y^2=12 x^6+33 x^5+15 x^4+15 x^3+15 x^2+33 x+12$
- $y^2=25 x^6+33 x^5+6 x^4+14 x^3+26 x^2+16 x+21$
- $y^2=26 x^6+37 x^5+39 x^4+39 x^3+22 x^2+39 x+38$
- $y^2=39 x^6+20 x^5+27 x^4+24 x^3+24 x^2+8 x+10$
- $y^2=10 x^6+13 x^5+38 x^4+35 x^3+17 x^2+39 x+18$
- $y^2=31 x^6+8 x^5+23 x^4+3 x^3+12 x^2+22 x+12$
- $y^2=26 x^6+40 x^5+9 x^4+9 x^3+5 x^2+27 x+35$
- $y^2=16 x^6+3 x^5+11 x^4+23 x^3+12 x^2+22 x+23$
- $y^2=31 x^6+32 x^5+17 x^4+9 x^3+x^2+40 x+12$
- $y^2=7 x^6+12 x^5+21 x^4+18 x^3+16 x^2+23 x+16$
- $y^2=16 x^6+4 x^5+7 x^4+16 x^3+35 x+20$
- $y^2=11 x^6+35 x^5+35 x^4+4 x^3+30 x^2+19 x+19$
- $y^2=20 x^5+24 x^4+24 x^3+32 x^2+10 x+11$
- $y^2=40 x^6+34 x^5+5 x^4+x^3+36 x^2+33 x+15$
- $y^2=37 x^6+25 x^5+3 x^4+31 x^3+18 x^2+29 x+5$
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$
The isogeny class factors as 1.41.am $\times$ 1.41.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists