L(s) = 1 | − 2-s − 4-s + 3·8-s − 9-s + 6·13-s − 16-s − 4·17-s + 18-s − 6·26-s + 6·29-s − 5·32-s + 4·34-s + 36-s − 6·37-s − 6·41-s + 49-s − 6·52-s − 2·53-s − 6·58-s − 4·61-s + 7·64-s + 4·68-s − 3·72-s − 12·73-s + 6·74-s − 8·81-s + 6·82-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1/2·4-s + 1.06·8-s − 1/3·9-s + 1.66·13-s − 1/4·16-s − 0.970·17-s + 0.235·18-s − 1.17·26-s + 1.11·29-s − 0.883·32-s + 0.685·34-s + 1/6·36-s − 0.986·37-s − 0.937·41-s + 1/7·49-s − 0.832·52-s − 0.274·53-s − 0.787·58-s − 0.512·61-s + 7/8·64-s + 0.485·68-s − 0.353·72-s − 1.40·73-s + 0.697·74-s − 8/9·81-s + 0.662·82-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 490000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.380469065923753362108822941100, −8.237385336642193823181627930991, −7.40923600587800922309523787794, −6.99275576380760999028025990083, −6.56941417599752834391155487362, −5.97580057270253963797869123726, −5.59341646010923993961183069879, −4.90578255134575120353300851114, −4.46569743003341575774922936670, −3.94855452338423015898811790209, −3.38369045686413583649245551085, −2.72665184391315798160327906994, −1.75480990713037450762701281004, −1.18250629961504404653103923782, 0,
1.18250629961504404653103923782, 1.75480990713037450762701281004, 2.72665184391315798160327906994, 3.38369045686413583649245551085, 3.94855452338423015898811790209, 4.46569743003341575774922936670, 4.90578255134575120353300851114, 5.59341646010923993961183069879, 5.97580057270253963797869123726, 6.56941417599752834391155487362, 6.99275576380760999028025990083, 7.40923600587800922309523787794, 8.237385336642193823181627930991, 8.380469065923753362108822941100