Properties

Label 4-700e2-1.1-c1e2-0-11
Degree $4$
Conductor $490000$
Sign $-1$
Analytic cond. $31.2428$
Root an. cond. $2.36421$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 3·8-s − 9-s + 6·13-s − 16-s − 4·17-s + 18-s − 6·26-s + 6·29-s − 5·32-s + 4·34-s + 36-s − 6·37-s − 6·41-s + 49-s − 6·52-s − 2·53-s − 6·58-s − 4·61-s + 7·64-s + 4·68-s − 3·72-s − 12·73-s + 6·74-s − 8·81-s + 6·82-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 1.06·8-s − 1/3·9-s + 1.66·13-s − 1/4·16-s − 0.970·17-s + 0.235·18-s − 1.17·26-s + 1.11·29-s − 0.883·32-s + 0.685·34-s + 1/6·36-s − 0.986·37-s − 0.937·41-s + 1/7·49-s − 0.832·52-s − 0.274·53-s − 0.787·58-s − 0.512·61-s + 7/8·64-s + 0.485·68-s − 0.353·72-s − 1.40·73-s + 0.697·74-s − 8/9·81-s + 0.662·82-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 490000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(490000\)    =    \(2^{4} \cdot 5^{4} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(31.2428\)
Root analytic conductor: \(2.36421\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 490000,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_2$ \( 1 + T + p T^{2} \)
5 \( 1 \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \) 2.3.a_b
11$C_2^2$ \( 1 + 3 T^{2} + p^{2} T^{4} \) 2.11.a_d
13$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) 2.13.ag_bi
17$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.17.e_bd
19$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \) 2.19.a_l
23$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \) 2.23.a_ak
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \) 2.29.ag_cg
31$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \) 2.31.a_k
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.37.g_cg
41$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 11 T + p T^{2} ) \) 2.41.g_bb
43$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \) 2.43.a_aw
47$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \) 2.47.a_cc
53$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.53.c_du
59$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \) 2.59.a_as
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.61.e_ew
67$C_2^2$ \( 1 - 119 T^{2} + p^{2} T^{4} \) 2.67.a_aep
71$C_2^2$ \( 1 - 110 T^{2} + p^{2} T^{4} \) 2.71.a_aeg
73$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 11 T + p T^{2} ) \) 2.73.m_gb
79$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \) 2.79.a_aw
83$C_2^2$ \( 1 - 87 T^{2} + p^{2} T^{4} \) 2.83.a_adj
89$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 17 T + p T^{2} ) \) 2.89.s_hn
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.97.a_hi
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.380469065923753362108822941100, −8.237385336642193823181627930991, −7.40923600587800922309523787794, −6.99275576380760999028025990083, −6.56941417599752834391155487362, −5.97580057270253963797869123726, −5.59341646010923993961183069879, −4.90578255134575120353300851114, −4.46569743003341575774922936670, −3.94855452338423015898811790209, −3.38369045686413583649245551085, −2.72665184391315798160327906994, −1.75480990713037450762701281004, −1.18250629961504404653103923782, 0, 1.18250629961504404653103923782, 1.75480990713037450762701281004, 2.72665184391315798160327906994, 3.38369045686413583649245551085, 3.94855452338423015898811790209, 4.46569743003341575774922936670, 4.90578255134575120353300851114, 5.59341646010923993961183069879, 5.97580057270253963797869123726, 6.56941417599752834391155487362, 6.99275576380760999028025990083, 7.40923600587800922309523787794, 8.237385336642193823181627930991, 8.380469065923753362108822941100

Graph of the $Z$-function along the critical line