L(s) = 1 | − 4·7-s + 10·13-s − 8·19-s + 5·25-s + 7·31-s − 11·37-s + 10·43-s + 9·49-s + 13·61-s − 5·67-s + 10·73-s − 17·79-s − 40·91-s + 10·97-s + 13·103-s − 17·109-s + 11·121-s + 127-s + 131-s + 32·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 1.51·7-s + 2.77·13-s − 1.83·19-s + 25-s + 1.25·31-s − 1.80·37-s + 1.52·43-s + 9/7·49-s + 1.66·61-s − 0.610·67-s + 1.17·73-s − 1.91·79-s − 4.19·91-s + 1.01·97-s + 1.28·103-s − 1.62·109-s + 121-s + 0.0887·127-s + 0.0873·131-s + 2.77·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.611875157\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.611875157\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.47051467324555825501408218195, −10.36085352411742237833569783296, −9.706371124018261947577911616879, −9.183872721975917997357219882368, −8.666957185865336672839115854772, −8.639266726384180833585740260978, −8.242672039494663270255201750844, −7.47428265685463010285386319793, −6.81585722559007291562249764007, −6.61078330450288838466668901466, −6.17631029587674796795130793101, −5.93539379745497448383189653466, −5.29954957061760091761372181978, −4.52859105018188863138849443064, −3.91089356611170728681137737208, −3.71449201499983786824730959351, −3.06720014594391318978330541493, −2.48793272427293153632119263446, −1.55263706632232339358065974440, −0.68110339004898393384495676703,
0.68110339004898393384495676703, 1.55263706632232339358065974440, 2.48793272427293153632119263446, 3.06720014594391318978330541493, 3.71449201499983786824730959351, 3.91089356611170728681137737208, 4.52859105018188863138849443064, 5.29954957061760091761372181978, 5.93539379745497448383189653466, 6.17631029587674796795130793101, 6.61078330450288838466668901466, 6.81585722559007291562249764007, 7.47428265685463010285386319793, 8.242672039494663270255201750844, 8.639266726384180833585740260978, 8.666957185865336672839115854772, 9.183872721975917997357219882368, 9.706371124018261947577911616879, 10.36085352411742237833569783296, 10.47051467324555825501408218195