| L(s) = 1 | + 3-s − 4-s + 9-s − 12-s − 6·13-s + 16-s − 4·19-s − 3·25-s + 27-s + 12·31-s − 36-s − 4·37-s − 6·39-s + 48-s − 13·49-s + 6·52-s − 4·57-s − 12·61-s − 64-s − 8·67-s − 12·73-s − 3·75-s + 4·76-s + 12·79-s + 81-s + 12·93-s − 18·97-s + ⋯ |
| L(s) = 1 | + 0.577·3-s − 1/2·4-s + 1/3·9-s − 0.288·12-s − 1.66·13-s + 1/4·16-s − 0.917·19-s − 3/5·25-s + 0.192·27-s + 2.15·31-s − 1/6·36-s − 0.657·37-s − 0.960·39-s + 0.144·48-s − 1.85·49-s + 0.832·52-s − 0.529·57-s − 1.53·61-s − 1/8·64-s − 0.977·67-s − 1.40·73-s − 0.346·75-s + 0.458·76-s + 1.35·79-s + 1/9·81-s + 1.24·93-s − 1.82·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 199692 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 199692 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.794087344176606936923568500805, −8.399460047613123746517001623112, −7.966460710590193427933358013276, −7.51556821901647152371195088821, −7.05211631588547902253803126544, −6.37824176682823895122682721276, −6.05181136065730957462811593875, −5.17141384954938841752023439268, −4.67362741269112481658010539118, −4.44565762000985887619730823287, −3.63298581292141333806061808659, −2.91820165733202468640904882583, −2.40818465163262239309442830985, −1.52043177969289184111367795624, 0,
1.52043177969289184111367795624, 2.40818465163262239309442830985, 2.91820165733202468640904882583, 3.63298581292141333806061808659, 4.44565762000985887619730823287, 4.67362741269112481658010539118, 5.17141384954938841752023439268, 6.05181136065730957462811593875, 6.37824176682823895122682721276, 7.05211631588547902253803126544, 7.51556821901647152371195088821, 7.966460710590193427933358013276, 8.399460047613123746517001623112, 8.794087344176606936923568500805