Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 6 x^{2} + 3481 x^{4}$ |
| Frobenius angles: | $\pm0.258096115487$, $\pm0.741903884513$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{7}, \sqrt{-31})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $260$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3488$ | $12166144$ | $42180471200$ | $146998359506944$ | $511116753660410528$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $60$ | $3494$ | $205380$ | $12131214$ | $714924300$ | $42180408758$ | $2488651484820$ | $146830390134814$ | $8662995818654940$ | $511116754020179654$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 260 curves (of which all are hyperelliptic):
- $y^2=13 x^6+23 x^5+40 x^4+48 x^3+49 x^2+33 x+56$
- $y^2=26 x^6+46 x^5+21 x^4+37 x^3+39 x^2+7 x+53$
- $y^2=24 x^6+55 x^5+6 x^4+8 x^3+57 x^2+27 x+27$
- $y^2=48 x^6+51 x^5+12 x^4+16 x^3+55 x^2+54 x+54$
- $y^2=5 x^6+5 x^5+48 x^4+45 x^3+52 x^2+3 x+18$
- $y^2=21 x^6+37 x^5+44 x^4+23 x^3+41 x^2+9 x+38$
- $y^2=42 x^6+15 x^5+29 x^4+46 x^3+23 x^2+18 x+17$
- $y^2=9 x^6+20 x^5+49 x^4+43 x^3+24 x^2+16 x+51$
- $y^2=18 x^6+40 x^5+39 x^4+27 x^3+48 x^2+32 x+43$
- $y^2=38 x^6+24 x^5+41 x^4+43 x^3+55 x^2+7 x+20$
- $y^2=17 x^6+48 x^5+23 x^4+27 x^3+51 x^2+14 x+40$
- $y^2=34 x^6+9 x^5+56 x^4+36 x^3+3 x^2+17 x+2$
- $y^2=9 x^6+18 x^5+53 x^4+13 x^3+6 x^2+34 x+4$
- $y^2=39 x^6+34 x^5+6 x^4+20 x^2+16 x+50$
- $y^2=19 x^6+9 x^5+12 x^4+40 x^2+32 x+41$
- $y^2=31 x^6+26 x^5+17 x^4+x^3+19 x^2+43 x+27$
- $y^2=3 x^6+52 x^5+34 x^4+2 x^3+38 x^2+27 x+54$
- $y^2=18 x^6+29 x^5+50 x^4+7 x^3+5 x^2+58$
- $y^2=36 x^6+58 x^5+41 x^4+14 x^3+10 x^2+57$
- $y^2=58 x^5+29 x^4+38 x^3+40 x^2+41 x+23$
- and 240 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{7}, \sqrt{-31})\). |
| The base change of $A$ to $\F_{59^{2}}$ is 1.3481.g 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-217}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.59.a_ag | $4$ | (not in LMFDB) |