Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 126 x^{2} + 7921 x^{4}$ |
| Frobenius angles: | $\pm0.124829211204$, $\pm0.875170788796$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-13}, \sqrt{19})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $72$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $7796$ | $60777616$ | $496982284724$ | $3936584664715264$ | $31181719937905493876$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $90$ | $7670$ | $704970$ | $62742174$ | $5584059450$ | $496983278486$ | $44231334895530$ | $3936589056668734$ | $350356403707485210$ | $31181719945844804150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=23 x^6+32 x^5+56 x^4+15 x^2+48 x+59$
- $y^2=69 x^6+7 x^5+79 x^4+45 x^2+55 x+88$
- $y^2=76 x^6+49 x^5+7 x^4+51 x^3+88 x^2+69 x+38$
- $y^2=50 x^6+58 x^5+21 x^4+64 x^3+86 x^2+29 x+25$
- $y^2=61 x^6+53 x^5+6 x^4+45 x^3+55 x^2+x+78$
- $y^2=48 x^6+75 x^5+55 x^4+5 x^3+33 x^2+27 x+36$
- $y^2=20 x^6+88 x^5+29 x^4+52 x^3+5 x^2+55 x+62$
- $y^2=54 x^6+52 x^5+68 x^4+77 x^3+28 x^2+46 x+76$
- $y^2=38 x^6+79 x^5+6 x^4+11 x^3+45 x^2+16 x+78$
- $y^2=13 x^6+81 x^5+x^4+87 x^3+76 x^2+41 x+43$
- $y^2=35 x^6+19 x^5+60 x^4+x^3+25 x^2+41 x+10$
- $y^2=44 x^6+28 x^5+49 x^4+13 x^3+61 x^2+60 x+66$
- $y^2=60 x^6+2 x^5+66 x^4+68 x^3+71 x^2+84 x+49$
- $y^2=11 x^6+33 x^5+7 x^4+31 x^3+38 x^2+36 x+44$
- $y^2=39 x^6+39 x^5+45 x^4+60 x^3+23 x^2+21 x+76$
- $y^2=69 x^6+x^5+15 x^4+56 x^3+42 x^2+34 x+34$
- $y^2=40 x^5+58 x^4+87 x^3+48 x^2+81 x+48$
- $y^2=12 x^6+3 x^5+33 x^4+85 x^3+47 x^2+74 x+44$
- $y^2=76 x^6+86 x^5+86 x^4+22 x^3+78 x^2+19 x+25$
- $y^2=54 x^6+78 x^5+21 x^4+10 x^3+8 x^2+14 x+17$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89^{2}}$.
Endomorphism algebra over $\F_{89}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-13}, \sqrt{19})\). |
| The base change of $A$ to $\F_{89^{2}}$ is 1.7921.aew 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-247}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.89.a_ew | $4$ | (not in LMFDB) |