L(s) = 1 | + 2·5-s − 2·11-s − 6·25-s − 16·31-s − 4·37-s + 16·47-s − 2·49-s + 2·53-s − 4·55-s + 20·59-s + 12·67-s − 24·71-s − 10·89-s − 4·97-s + 4·103-s − 10·113-s − 7·121-s − 22·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 32·155-s + 157-s + 163-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 0.603·11-s − 6/5·25-s − 2.87·31-s − 0.657·37-s + 2.33·47-s − 2/7·49-s + 0.274·53-s − 0.539·55-s + 2.60·59-s + 1.46·67-s − 2.84·71-s − 1.05·89-s − 0.406·97-s + 0.394·103-s − 0.940·113-s − 0.636·121-s − 1.96·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 2.57·155-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.208698350501136865822409587022, −7.60098898575946103655366101396, −7.23196772200456881961471274007, −6.97437474611938562753462394133, −6.20515810366943087228049968621, −5.75156434949229095510045245007, −5.41893256682065107138105026687, −5.21532340665130469673283152359, −4.21729022605330335351110523059, −3.90223284501489060439609042327, −3.30850890224101991277644795477, −2.38384924502343313739920076963, −2.15663829479884840942590429087, −1.33949072842649607600712159481, 0,
1.33949072842649607600712159481, 2.15663829479884840942590429087, 2.38384924502343313739920076963, 3.30850890224101991277644795477, 3.90223284501489060439609042327, 4.21729022605330335351110523059, 5.21532340665130469673283152359, 5.41893256682065107138105026687, 5.75156434949229095510045245007, 6.20515810366943087228049968621, 6.97437474611938562753462394133, 7.23196772200456881961471274007, 7.60098898575946103655366101396, 8.208698350501136865822409587022