Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 14 x + 59 x^{2} )( 1 - 6 x + 59 x^{2} )$ |
$1 - 20 x + 202 x^{2} - 1180 x^{3} + 3481 x^{4}$ | |
Frobenius angles: | $\pm0.135062563049$, $\pm0.372279067924$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $112$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2484$ | $12131856$ | $42299839764$ | $146843985024000$ | $511102097425410804$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $40$ | $3486$ | $205960$ | $12118478$ | $714903800$ | $42180568686$ | $2488655624600$ | $146830485246238$ | $8662996047970120$ | $511116753026230206$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=24 x^6+2 x^5+40 x^4+22 x^3+34 x^2+10 x+43$
- $y^2=33 x^6+38 x^5+28 x^4+20 x^3+20 x^2+14 x+40$
- $y^2=30 x^6+55 x^5+54 x^4+41 x^3+54 x^2+55 x+30$
- $y^2=31 x^6+38 x^5+17 x^4+x^3+3 x^2+41 x+25$
- $y^2=42 x^6+31 x^5+53 x^4+51 x^3+15 x^2+x+7$
- $y^2=38 x^6+56 x^5+27 x^4+35 x^3+52 x^2+57 x+38$
- $y^2=40 x^6+30 x^5+47 x^3+4 x^2+43 x+1$
- $y^2=16 x^6+19 x^5+2 x^4+x^3+2 x^2+19 x+16$
- $y^2=7 x^6+54 x^5+4 x^4+55 x^3+4 x^2+54 x+7$
- $y^2=35 x^6+27 x^5+43 x^4+55 x^3+43 x^2+44 x+50$
- $y^2=13 x^6+32 x^5+11 x^4+13 x^3+18 x^2+55 x+48$
- $y^2=31 x^6+50 x^5+44 x^4+8 x^3+19 x^2+46 x+23$
- $y^2=54 x^6+24 x^5+50 x^4+4 x^3+58 x^2+44 x+11$
- $y^2=35 x^6+23 x^5+11 x^4+5 x^3+25 x^2+47 x+44$
- $y^2=6 x^6+42 x^5+45 x^4+29 x^3+55 x^2+21 x+46$
- $y^2=36 x^6+34 x^5+42 x^4+13 x^3+26 x^2+39 x$
- $y^2=39 x^6+2 x^5+32 x^4+41 x^3+32 x^2+2 x+39$
- $y^2=2 x^6+47 x^5+37 x^4+49 x^3+37 x^2+47 x+2$
- $y^2=48 x^6+52 x^5+23 x^4+50 x^3+4 x^2+40 x+10$
- $y^2=14 x^6+49 x^5+41 x^4+12 x^3+38 x^2+18 x+6$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The isogeny class factors as 1.59.ao $\times$ 1.59.ag and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.ai_bi | $2$ | (not in LMFDB) |
2.59.i_bi | $2$ | (not in LMFDB) |
2.59.u_hu | $2$ | (not in LMFDB) |