L(s) = 1 | − 2·3-s − 6·5-s − 3·9-s − 6·11-s + 12·15-s + 17·25-s + 14·27-s + 8·31-s + 12·33-s − 14·37-s + 18·45-s − 6·47-s − 13·49-s + 36·55-s + 12·59-s − 28·67-s + 6·71-s − 34·75-s − 4·81-s − 12·89-s − 16·93-s − 20·97-s + 18·99-s + 8·103-s + 28·111-s − 12·113-s + 25·121-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 2.68·5-s − 9-s − 1.80·11-s + 3.09·15-s + 17/5·25-s + 2.69·27-s + 1.43·31-s + 2.08·33-s − 2.30·37-s + 2.68·45-s − 0.875·47-s − 1.85·49-s + 4.85·55-s + 1.56·59-s − 3.42·67-s + 0.712·71-s − 3.92·75-s − 4/9·81-s − 1.27·89-s − 1.65·93-s − 2.03·97-s + 1.80·99-s + 0.788·103-s + 2.65·111-s − 1.12·113-s + 2.27·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5234944 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5234944 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−6.80992153386544904186537940607, −6.66224713551990484880669593056, −6.03737998329952530382717734620, −5.41734923280427435562979846122, −5.35854408369170434929735266448, −4.83697201475855068833075570215, −4.44297288531505612446396437446, −4.08008544759795861745759386080, −3.31636164373489769760153942339, −3.03319543886757601365262705803, −2.86140175572535291493434732878, −1.83467892554345205053408946219, −0.71484850063807726614584220761, 0, 0,
0.71484850063807726614584220761, 1.83467892554345205053408946219, 2.86140175572535291493434732878, 3.03319543886757601365262705803, 3.31636164373489769760153942339, 4.08008544759795861745759386080, 4.44297288531505612446396437446, 4.83697201475855068833075570215, 5.35854408369170434929735266448, 5.41734923280427435562979846122, 6.03737998329952530382717734620, 6.66224713551990484880669593056, 6.80992153386544904186537940607