Properties

Label 2.67.bc_ms
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $( 1 + 14 x + 67 x^{2} )^{2}$
  $1 + 28 x + 330 x^{2} + 1876 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.826557230848$, $\pm0.826557230848$
Angle rank:  $1$ (numerical)
Jacobians:  $11$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $6724$ $19607184$ $90416881636$ $406274655937536$ $1822656392754958084$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $96$ $4366$ $300624$ $20161390$ $1349990736$ $90459575422$ $6060703902720$ $406067705445214$ $27206534521929408$ $1822837800924344686$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 11 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The isogeny class factors as 1.67.o 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.abc_ms$2$(not in LMFDB)
2.67.a_ack$2$(not in LMFDB)
2.67.ao_ez$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.abc_ms$2$(not in LMFDB)
2.67.a_ack$2$(not in LMFDB)
2.67.ao_ez$3$(not in LMFDB)
2.67.a_ck$4$(not in LMFDB)
2.67.o_ez$6$(not in LMFDB)
2.67.am_cu$8$(not in LMFDB)
2.67.m_cu$8$(not in LMFDB)