L(s) = 1 | − 2-s + 3-s + 4-s + 2·5-s − 6-s − 8-s + 9-s − 2·10-s − 8·11-s + 12-s − 3·13-s + 2·15-s + 16-s − 2·17-s − 18-s − 14·19-s + 2·20-s + 8·22-s + 8·23-s − 24-s + 2·25-s + 3·26-s + 27-s − 8·29-s − 2·30-s − 8·31-s − 32-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.894·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.632·10-s − 2.41·11-s + 0.288·12-s − 0.832·13-s + 0.516·15-s + 1/4·16-s − 0.485·17-s − 0.235·18-s − 3.21·19-s + 0.447·20-s + 1.70·22-s + 1.66·23-s − 0.204·24-s + 2/5·25-s + 0.588·26-s + 0.192·27-s − 1.48·29-s − 0.365·30-s − 1.43·31-s − 0.176·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 89856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 89856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.6792579084, −13.8852555440, −13.1981160403, −13.0814885133, −12.6736117023, −12.6632052580, −11.4847145732, −10.9063902704, −10.7072544481, −10.4866496825, −9.77369970372, −9.43370759693, −8.74330007195, −8.69573966035, −7.76516545555, −7.69025257464, −6.93707785293, −6.52923673371, −5.59584593533, −5.46781891073, −4.59332442535, −3.99394475360, −2.63009703572, −2.57523735650, −1.91249343135, 0,
1.91249343135, 2.57523735650, 2.63009703572, 3.99394475360, 4.59332442535, 5.46781891073, 5.59584593533, 6.52923673371, 6.93707785293, 7.69025257464, 7.76516545555, 8.69573966035, 8.74330007195, 9.43370759693, 9.77369970372, 10.4866496825, 10.7072544481, 10.9063902704, 11.4847145732, 12.6632052580, 12.6736117023, 13.0814885133, 13.1981160403, 13.8852555440, 14.6792579084