Properties

Label 4-89856-1.1-c1e2-0-16
Degree $4$
Conductor $89856$
Sign $-1$
Analytic cond. $5.72929$
Root an. cond. $1.54712$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 2·5-s − 6-s − 8-s + 9-s − 2·10-s − 8·11-s + 12-s − 3·13-s + 2·15-s + 16-s − 2·17-s − 18-s − 14·19-s + 2·20-s + 8·22-s + 8·23-s − 24-s + 2·25-s + 3·26-s + 27-s − 8·29-s − 2·30-s − 8·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.894·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.632·10-s − 2.41·11-s + 0.288·12-s − 0.832·13-s + 0.516·15-s + 1/4·16-s − 0.485·17-s − 0.235·18-s − 3.21·19-s + 0.447·20-s + 1.70·22-s + 1.66·23-s − 0.204·24-s + 2/5·25-s + 0.588·26-s + 0.192·27-s − 1.48·29-s − 0.365·30-s − 1.43·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 89856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 89856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(89856\)    =    \(2^{8} \cdot 3^{3} \cdot 13\)
Sign: $-1$
Analytic conductor: \(5.72929\)
Root analytic conductor: \(1.54712\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 89856,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_1$ \( 1 + T \)
3$C_1$ \( 1 - T \)
13$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 2 T + p T^{2} ) \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.5.ac_c
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.7.a_k
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \) 2.11.i_bm
17$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.17.c_bi
19$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.19.o_di
23$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \) 2.23.ai_ck
29$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.29.i_cg
31$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.31.i_cw
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) 2.37.ai_di
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \) 2.41.am_eo
43$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.43.i_di
47$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 4 T + p T^{2} ) \) 2.47.am_ew
53$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \) 2.53.am_ec
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \) 2.59.ai_fe
61$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) 2.61.e_as
67$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.67.g_fm
71$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) 2.71.e_aby
73$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.73.ae_g
79$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.79.ag_eo
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.83.a_w
89$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) 2.89.u_kc
97$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.97.a_dq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.6792579084, −13.8852555440, −13.1981160403, −13.0814885133, −12.6736117023, −12.6632052580, −11.4847145732, −10.9063902704, −10.7072544481, −10.4866496825, −9.77369970372, −9.43370759693, −8.74330007195, −8.69573966035, −7.76516545555, −7.69025257464, −6.93707785293, −6.52923673371, −5.59584593533, −5.46781891073, −4.59332442535, −3.99394475360, −2.63009703572, −2.57523735650, −1.91249343135, 0, 1.91249343135, 2.57523735650, 2.63009703572, 3.99394475360, 4.59332442535, 5.46781891073, 5.59584593533, 6.52923673371, 6.93707785293, 7.69025257464, 7.76516545555, 8.69573966035, 8.74330007195, 9.43370759693, 9.77369970372, 10.4866496825, 10.7072544481, 10.9063902704, 11.4847145732, 12.6632052580, 12.6736117023, 13.0814885133, 13.1981160403, 13.8852555440, 14.6792579084

Graph of the $Z$-function along the critical line