Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 43 x^{2} )( 1 + 8 x + 43 x^{2} )$ |
$1 + 8 x + 86 x^{2} + 344 x^{3} + 1849 x^{4}$ | |
Frobenius angles: | $\pm0.5$, $\pm0.708828274828$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $120$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2288$ | $3624192$ | $6280177904$ | $11686540529664$ | $21610989834996848$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $52$ | $1958$ | $78988$ | $3418318$ | $147005092$ | $6321410678$ | $271819646332$ | $11688189947806$ | $502592595359764$ | $21611482890082118$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=13 x^6+16 x^5+35 x^4+35 x^3+22 x^2+25 x+26$
- $y^2=37 x^6+34 x^5+9 x^4+33 x^3+9 x^2+34 x+37$
- $y^2=40 x^6+21 x^5+34 x^4+3 x^3+34 x^2+21 x+40$
- $y^2=32 x^6+33 x^5+18 x^4+24 x^3+4 x^2+x+15$
- $y^2=29 x^6+25 x^5+20 x^4+26 x^3+41 x^2+27 x+5$
- $y^2=13 x^6+12 x^5+37 x^4+39 x^3+33 x^2+19 x+14$
- $y^2=38 x^6+20 x^5+28 x^4+31 x^3+28 x^2+20 x+38$
- $y^2=23 x^6+13 x^5+20 x^4+11 x^3+38 x^2+17 x+16$
- $y^2=17 x^6+29 x^5+2 x^4+16 x^3+22 x^2+21 x+38$
- $y^2=7 x^6+41 x^5+10 x^4+12 x^3+13 x^2+25 x+26$
- $y^2=22 x^5+37 x^4+25 x^3+37 x^2+22 x$
- $y^2=10 x^6+33 x^5+35 x^4+33 x^3+17 x+12$
- $y^2=35 x^6+17 x^5+24 x^4+12 x^3+8 x^2+36 x+39$
- $y^2=18 x^6+7 x^5+33 x^4+38 x^3+28 x^2+5 x+7$
- $y^2=26 x^6+22 x^5+16 x^4+29 x^3+16 x^2+22 x+26$
- $y^2=6 x^6+10 x^5+x^4+27 x^3+36 x^2+2 x+37$
- $y^2=36 x^6+10 x^5+19 x^4+37 x^3+22 x^2+34 x+20$
- $y^2=39 x^6+7 x^5+7 x^4+26 x^3+30 x^2+18 x+27$
- $y^2=29 x^6+33 x^5+9 x^4+31 x^3+9 x^2+33 x+29$
- $y^2=38 x^6+24 x^5+10 x^4+21 x^3+15 x^2+24 x+30$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{2}}$.
Endomorphism algebra over $\F_{43}$The isogeny class factors as 1.43.a $\times$ 1.43.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{43^{2}}$ is 1.1849.w $\times$ 1.1849.di. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.