L(s) = 1 | − 3-s + 9-s − 4·11-s + 5·13-s − 12·23-s − 6·25-s − 27-s + 4·33-s − 18·37-s − 5·39-s + 10·47-s − 4·49-s + 8·59-s + 2·61-s + 12·69-s − 12·71-s + 6·73-s + 6·75-s + 81-s − 8·83-s − 12·97-s − 4·99-s + 4·107-s + 14·109-s + 18·111-s + 5·117-s + 6·121-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s − 1.20·11-s + 1.38·13-s − 2.50·23-s − 6/5·25-s − 0.192·27-s + 0.696·33-s − 2.95·37-s − 0.800·39-s + 1.45·47-s − 4/7·49-s + 1.04·59-s + 0.256·61-s + 1.44·69-s − 1.42·71-s + 0.702·73-s + 0.692·75-s + 1/9·81-s − 0.878·83-s − 1.21·97-s − 0.402·99-s + 0.386·107-s + 1.34·109-s + 1.70·111-s + 0.462·117-s + 6/11·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 89856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 89856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.524811990327994550461536332441, −8.770137187982290334159011299348, −8.363767168178449551323442665303, −7.998379844258845816073274760932, −7.37497260420365839759678894085, −6.88163451054120410871295459715, −6.12772788593838726278931147857, −5.76543344645235926489805006842, −5.42273010312330363104014553154, −4.61197406367694580096900637405, −3.86505460837619360642154169006, −3.53341626513699331154563399162, −2.35643960379084741509267931613, −1.63988711670840286382739524348, 0,
1.63988711670840286382739524348, 2.35643960379084741509267931613, 3.53341626513699331154563399162, 3.86505460837619360642154169006, 4.61197406367694580096900637405, 5.42273010312330363104014553154, 5.76543344645235926489805006842, 6.12772788593838726278931147857, 6.88163451054120410871295459715, 7.37497260420365839759678894085, 7.998379844258845816073274760932, 8.363767168178449551323442665303, 8.770137187982290334159011299348, 9.524811990327994550461536332441