Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 20 x^{2} + 841 x^{4}$ |
Frobenius angles: | $\pm0.306031309296$, $\pm0.693968690704$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{38}, \sqrt{-78})\) |
Galois group: | $C_2^2$ |
Jacobians: | $36$ |
Isomorphism classes: | 48 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $862$ | $743044$ | $594780862$ | $502062942096$ | $420707273588302$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $30$ | $882$ | $24390$ | $709846$ | $20511150$ | $594738402$ | $17249876310$ | $500245955038$ | $14507145975870$ | $420707313876402$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=3 x^6+25 x^5+26 x^4+8 x^3+26 x^2+5 x+25$
- $y^2=6 x^6+21 x^5+23 x^4+16 x^3+23 x^2+10 x+21$
- $y^2=28 x^6+20 x^5+13 x^4+25 x^2+21 x+10$
- $y^2=27 x^6+11 x^5+26 x^4+21 x^2+13 x+20$
- $y^2=23 x^6+26 x^5+18 x^4+15 x^3+27 x+19$
- $y^2=17 x^6+23 x^5+7 x^4+x^3+25 x+9$
- $y^2=13 x^6+7 x^5+4 x^4+11 x^3+14 x^2+3 x+27$
- $y^2=26 x^6+14 x^5+8 x^4+22 x^3+28 x^2+6 x+25$
- $y^2=28 x^6+19 x^5+11 x^4+11 x^3+5 x^2+12 x+6$
- $y^2=27 x^6+9 x^5+22 x^4+22 x^3+10 x^2+24 x+12$
- $y^2=x^6+16 x^5+4 x^4+14 x^3+13 x^2+25 x+27$
- $y^2=2 x^6+3 x^5+8 x^4+28 x^3+26 x^2+21 x+25$
- $y^2=5 x^6+2 x^5+5 x^4+10 x^3+15 x^2+11 x+5$
- $y^2=10 x^6+4 x^5+10 x^4+20 x^3+x^2+22 x+10$
- $y^2=5 x^6+15 x^5+14 x^4+28 x^3+9 x^2+2 x+10$
- $y^2=10 x^6+x^5+28 x^4+27 x^3+18 x^2+4 x+20$
- $y^2=17 x^5+10 x^4+13 x^3+19 x^2+27 x+2$
- $y^2=5 x^5+20 x^4+26 x^3+9 x^2+25 x+4$
- $y^2=19 x^6+23 x^5+27 x^3+20 x^2+21 x+23$
- $y^2=9 x^6+17 x^5+25 x^3+11 x^2+13 x+17$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29^{2}}$.
Endomorphism algebra over $\F_{29}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{38}, \sqrt{-78})\). |
The base change of $A$ to $\F_{29^{2}}$ is 1.841.u 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-741}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.a_au | $4$ | (not in LMFDB) |