L(s) = 1 | + 2·7-s − 4·13-s − 25-s − 10·31-s − 4·43-s + 5·49-s + 20·67-s − 6·73-s − 8·91-s − 10·97-s − 8·103-s − 5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s + 173-s − 2·175-s + 179-s + 181-s + 191-s + ⋯ |
L(s) = 1 | + 0.755·7-s − 1.10·13-s − 1/5·25-s − 1.79·31-s − 0.609·43-s + 5/7·49-s + 2.44·67-s − 0.702·73-s − 0.838·91-s − 1.01·97-s − 0.788·103-s − 0.454·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + 0.0760·173-s − 0.151·175-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.041764858913999176782613181687, −7.63121832990769535402464390015, −7.15628710462374356290328793593, −6.90861711679362434497792107114, −6.26197369189457851526778279155, −5.68824214952961854645032940202, −5.17052616635325985880632649184, −5.03093621029957419457886585318, −4.27815657140639024747881011562, −3.85810000901155997239535168085, −3.24582912488533076545035269769, −2.45636316817433222078530078293, −2.03980379822483563768201267843, −1.24625155279638920608582671287, 0,
1.24625155279638920608582671287, 2.03980379822483563768201267843, 2.45636316817433222078530078293, 3.24582912488533076545035269769, 3.85810000901155997239535168085, 4.27815657140639024747881011562, 5.03093621029957419457886585318, 5.17052616635325985880632649184, 5.68824214952961854645032940202, 6.26197369189457851526778279155, 6.90861711679362434497792107114, 7.15628710462374356290328793593, 7.63121832990769535402464390015, 8.041764858913999176782613181687