L(s) = 1 | + 4·5-s + 2·13-s + 12·17-s + 2·25-s + 16·29-s − 10·37-s + 16·41-s − 13·49-s + 8·53-s + 6·61-s + 8·65-s + 18·73-s + 48·85-s − 4·89-s + 2·97-s − 20·109-s − 20·113-s − 18·121-s − 28·125-s + 127-s + 131-s + 137-s + 139-s + 64·145-s + 149-s + 151-s + 157-s + ⋯ |
L(s) = 1 | + 1.78·5-s + 0.554·13-s + 2.91·17-s + 2/5·25-s + 2.97·29-s − 1.64·37-s + 2.49·41-s − 1.85·49-s + 1.09·53-s + 0.768·61-s + 0.992·65-s + 2.10·73-s + 5.20·85-s − 0.423·89-s + 0.203·97-s − 1.91·109-s − 1.88·113-s − 1.63·121-s − 2.50·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 5.31·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.674012128\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.674012128\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.452903426046461019559543114245, −7.76557077946649787116094304644, −7.57195972780640499908950962067, −6.71110929993388671275045148454, −6.43257826526562631052914578190, −5.98787564282874923662914045287, −5.61589452328752483822361023345, −5.17169676997140923385106697279, −4.85942281184589681377721538834, −3.82323482337136190917747918800, −3.58529057716851715664298339034, −2.66421157652505017015711163951, −2.46655581258054430403163598781, −1.29992084912787334744679961781, −1.19497678164755144713673653335,
1.19497678164755144713673653335, 1.29992084912787334744679961781, 2.46655581258054430403163598781, 2.66421157652505017015711163951, 3.58529057716851715664298339034, 3.82323482337136190917747918800, 4.85942281184589681377721538834, 5.17169676997140923385106697279, 5.61589452328752483822361023345, 5.98787564282874923662914045287, 6.43257826526562631052914578190, 6.71110929993388671275045148454, 7.57195972780640499908950962067, 7.76557077946649787116094304644, 8.452903426046461019559543114245