L(s) = 1 | − 6·7-s − 6·13-s + 6·19-s − 6·25-s + 14·37-s + 24·43-s + 13·49-s − 2·61-s + 6·67-s − 30·73-s − 18·79-s + 36·91-s + 18·97-s − 30·103-s + 12·109-s + 14·121-s + 127-s + 131-s − 36·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s + ⋯ |
L(s) = 1 | − 2.26·7-s − 1.66·13-s + 1.37·19-s − 6/5·25-s + 2.30·37-s + 3.65·43-s + 13/7·49-s − 0.256·61-s + 0.733·67-s − 3.51·73-s − 2.02·79-s + 3.77·91-s + 1.82·97-s − 2.95·103-s + 1.14·109-s + 1.27·121-s + 0.0887·127-s + 0.0873·131-s − 3.12·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1/13·169-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.86400018758168335012851109883, −7.42468008636998742776243725148, −7.28999576050073652042194900023, −6.84703029813025683919349357796, −5.96701174527234514935331354680, −5.96035170554403781150034405946, −5.63427018232312358528631119727, −4.62403138193129190420684686156, −4.36568585015197304210716831899, −3.73252772900173333221011269732, −2.94454619082960172956967045225, −2.88076148445155716360589692436, −2.20258441520663841153734800735, −0.920256988552060674036203635836, 0,
0.920256988552060674036203635836, 2.20258441520663841153734800735, 2.88076148445155716360589692436, 2.94454619082960172956967045225, 3.73252772900173333221011269732, 4.36568585015197304210716831899, 4.62403138193129190420684686156, 5.63427018232312358528631119727, 5.96035170554403781150034405946, 5.96701174527234514935331354680, 6.84703029813025683919349357796, 7.28999576050073652042194900023, 7.42468008636998742776243725148, 7.86400018758168335012851109883