Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 15 x + 73 x^{2} )^{2}$ |
$1 + 30 x + 371 x^{2} + 2190 x^{3} + 5329 x^{4}$ | |
Frobenius angles: | $\pm0.840995200155$, $\pm0.840995200155$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7921$ | $27573001$ | $151405035664$ | $806711038270281$ | $4297323896275515361$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $104$ | $5172$ | $389198$ | $28407076$ | $2072925944$ | $151335766158$ | $11047386053528$ | $806460166467268$ | $58871586499656734$ | $4297625827388882772$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):
- $y^2=16 x^6+13 x^5+53 x^4+67 x^3+51 x^2+15 x+54$
- $y^2=49 x^6+48 x^5+28 x^4+62 x^3+36 x^2+36 x+10$
- $y^2=62 x^6+28 x^5+36 x^4+4 x^3+34 x^2+12 x+41$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The isogeny class factors as 1.73.p 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-67}) \)$)$ |
Base change
This is a primitive isogeny class.