| L(s) = 1 | − 2-s + 4-s + 2·5-s − 8-s − 4·9-s − 2·10-s + 16-s − 12·17-s + 4·18-s + 2·20-s + 2·25-s − 29-s − 32-s + 12·34-s − 4·36-s + 6·37-s − 2·40-s − 9·41-s − 8·45-s + 12·49-s − 2·50-s − 13·53-s + 58-s − 3·61-s + 64-s − 12·68-s + 4·72-s + ⋯ |
| L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.894·5-s − 0.353·8-s − 4/3·9-s − 0.632·10-s + 1/4·16-s − 2.91·17-s + 0.942·18-s + 0.447·20-s + 2/5·25-s − 0.185·29-s − 0.176·32-s + 2.05·34-s − 2/3·36-s + 0.986·37-s − 0.316·40-s − 1.40·41-s − 1.19·45-s + 12/7·49-s − 0.282·50-s − 1.78·53-s + 0.131·58-s − 0.384·61-s + 1/8·64-s − 1.45·68-s + 0.471·72-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85280 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85280 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.224486339207784274856831695517, −9.014324528663914988415195950125, −8.598176117075040107317017705902, −8.167669062704529546265040923924, −7.44719866346887288604506445660, −6.75510580641326044100052274163, −6.46024845359945043489505309416, −5.93744053383392269601718150667, −5.38053924691955567999028957967, −4.68415335700728420746058609766, −4.00764230900292277926282448475, −2.89503764334687303865924893224, −2.47423862222541547451291809286, −1.71510783331884397824148465439, 0,
1.71510783331884397824148465439, 2.47423862222541547451291809286, 2.89503764334687303865924893224, 4.00764230900292277926282448475, 4.68415335700728420746058609766, 5.38053924691955567999028957967, 5.93744053383392269601718150667, 6.46024845359945043489505309416, 6.75510580641326044100052274163, 7.44719866346887288604506445660, 8.167669062704529546265040923924, 8.598176117075040107317017705902, 9.014324528663914988415195950125, 9.224486339207784274856831695517