Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 29 x^{2} + 3481 x^{4}$ |
| Frobenius angles: | $\pm0.289519200273$, $\pm0.710480799727$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{89})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $57$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3511$ | $12327121$ | $42180255184$ | $146978840051289$ | $511116754653679351$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $60$ | $3540$ | $205380$ | $12129604$ | $714924300$ | $42179976726$ | $2488651484820$ | $146830411140484$ | $8662995818654940$ | $511116756006717300$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 57 curves (of which all are hyperelliptic):
- $y^2=16 x^6+33 x^5+25 x^4+50 x^3+x^2+32 x+13$
- $y^2=32 x^6+7 x^5+50 x^4+41 x^3+2 x^2+5 x+26$
- $y^2=52 x^6+4 x^5+18 x^4+22 x^3+50 x^2+42 x+52$
- $y^2=45 x^6+8 x^5+36 x^4+44 x^3+41 x^2+25 x+45$
- $y^2=21 x^6+47 x^5+32 x^4+19 x^3+21 x^2+43 x+11$
- $y^2=11 x^6+18 x^5+49 x^4+57 x^3+15 x^2+43 x+5$
- $y^2=22 x^6+36 x^5+39 x^4+55 x^3+30 x^2+27 x+10$
- $y^2=8 x^6+14 x^5+27 x^4+54 x^3+37 x^2+8 x+20$
- $y^2=18 x^6+4 x^5+46 x^4+46 x^3+57 x^2+31 x+21$
- $y^2=36 x^6+8 x^5+33 x^4+33 x^3+55 x^2+3 x+42$
- $y^2=27 x^6+25 x^5+55 x^4+53 x^3+51 x^2+13 x+8$
- $y^2=54 x^6+50 x^5+51 x^4+47 x^3+43 x^2+26 x+16$
- $y^2=13 x^6+23 x^5+44 x^4+16 x^3+11 x^2+26 x+58$
- $y^2=26 x^6+46 x^5+29 x^4+32 x^3+22 x^2+52 x+57$
- $y^2=13 x^6+23 x^5+9 x^4+16 x^3+39 x^2+32 x+57$
- $y^2=51 x^6+55 x^5+28 x^4+8 x^3+22 x^2+49 x+47$
- $y^2=43 x^6+51 x^5+56 x^4+16 x^3+44 x^2+39 x+35$
- $y^2=55 x^6+37 x^5+45 x^4+12 x^3+3 x^2+8$
- $y^2=51 x^6+15 x^5+31 x^4+24 x^3+6 x^2+16$
- $y^2=47 x^6+41 x^5+10 x^4+7 x^3+38 x^2+25 x+35$
- and 37 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{89})\). |
| The base change of $A$ to $\F_{59^{2}}$ is 1.3481.bd 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-267}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.59.av_hy | $3$ | (not in LMFDB) |
| 2.59.v_hy | $3$ | (not in LMFDB) |
| 2.59.a_abd | $4$ | (not in LMFDB) |