Invariants
| Base field: | $\F_{31}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 36 x^{2} + 961 x^{4}$ |
| Frobenius angles: | $\pm0.348599812917$, $\pm0.651400187083$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-2}, \sqrt{-13})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $42$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $998$ | $996004$ | $887446550$ | $854049525904$ | $819628289498678$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $32$ | $1034$ | $29792$ | $924774$ | $28629152$ | $887389418$ | $27512614112$ | $852893947774$ | $26439622160672$ | $819628292016554$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 42 curves (of which all are hyperelliptic):
- $y^2=7 x^6+28 x^5+2 x^4+25 x^3+7 x^2+11 x+6$
- $y^2=21 x^6+22 x^5+6 x^4+13 x^3+21 x^2+2 x+18$
- $y^2=16 x^6+18 x^5+7 x^4+12 x^3+27 x^2+25 x+8$
- $y^2=17 x^6+23 x^5+21 x^4+5 x^3+19 x^2+13 x+24$
- $y^2=10 x^6+15 x^5+9 x^4+9 x^3+x^2+20 x+22$
- $y^2=30 x^6+14 x^5+27 x^4+27 x^3+3 x^2+29 x+4$
- $y^2=29 x^6+18 x^5+27 x^4+7 x^3+10 x^2+6 x+23$
- $y^2=25 x^6+23 x^5+19 x^4+21 x^3+30 x^2+18 x+7$
- $y^2=7 x^6+9 x^5+6 x^4+x^3+20 x^2+16 x+4$
- $y^2=21 x^6+27 x^5+18 x^4+3 x^3+29 x^2+17 x+12$
- $y^2=24 x^6+9 x^5+5 x^4+28 x^3+16 x^2+24 x+11$
- $y^2=10 x^6+27 x^5+15 x^4+22 x^3+17 x^2+10 x+2$
- $y^2=25 x^6+18 x^5+9 x^4+27 x^2+27 x+27$
- $y^2=13 x^6+23 x^5+27 x^4+19 x^2+19 x+19$
- $y^2=14 x^6+20 x^5+29 x^3+7 x^2+18 x+4$
- $y^2=11 x^6+29 x^5+25 x^3+21 x^2+23 x+12$
- $y^2=4 x^6+24 x^5+5 x^4+6 x^3+8 x^2+15 x+19$
- $y^2=12 x^6+10 x^5+15 x^4+18 x^3+24 x^2+14 x+26$
- $y^2=18 x^6+15 x^5+18 x^4+x^3+16 x^2+11 x+28$
- $y^2=23 x^6+14 x^5+23 x^4+3 x^3+17 x^2+2 x+22$
- and 22 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31^{2}}$.
Endomorphism algebra over $\F_{31}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{-13})\). |
| The base change of $A$ to $\F_{31^{2}}$ is 1.961.bk 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-13}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.31.a_abk | $4$ | (not in LMFDB) |
| 2.31.ao_du | $8$ | (not in LMFDB) |
| 2.31.o_du | $8$ | (not in LMFDB) |