Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 3 x + 53 x^{2} )( 1 + 10 x + 53 x^{2} )$ |
| $1 + 13 x + 136 x^{2} + 689 x^{3} + 2809 x^{4}$ | |
| Frobenius angles: | $\pm0.566057977562$, $\pm0.740986412023$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $56$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3648$ | $8186112$ | $22010091264$ | $62273816884224$ | $174891933737686848$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $67$ | $2913$ | $147838$ | $7892273$ | $418206167$ | $22164406038$ | $1174710791867$ | $62259676442881$ | $3299763759794374$ | $174887470194932793$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=46 x^6+10 x^5+43 x^4+7 x^3+32 x^2+12 x+9$
- $y^2=14 x^6+18 x^5+5 x^4+16 x^3+26 x^2+27 x$
- $y^2=33 x^6+38 x^5+35 x^4+37 x^3+21 x^2+43 x+44$
- $y^2=40 x^6+2 x^5+14 x^4+4 x^3+7 x^2+48 x+18$
- $y^2=46 x^6+3 x^5+6 x^4+46 x^3+29 x^2+9$
- $y^2=16 x^6+30 x^5+10 x^4+44 x^3+42 x^2+40 x+1$
- $y^2=6 x^6+17 x^5+26 x^4+6 x^3+32 x^2+34 x+41$
- $y^2=36 x^6+15 x^5+51 x^4+28 x^3+38 x^2+2 x+35$
- $y^2=19 x^6+11 x^5+34 x^4+36 x^3+7 x^2+52 x+23$
- $y^2=9 x^6+48 x^5+39 x^4+30 x^3+32 x^2+18 x+22$
- $y^2=36 x^6+23 x^4+52 x^3+10 x^2+x+37$
- $y^2=28 x^6+12 x^5+23 x^4+28 x^3+52 x^2+15 x$
- $y^2=44 x^6+31 x^5+49 x^4+9 x^3+12 x^2+37 x+30$
- $y^2=45 x^6+37 x^5+7 x^4+47 x^3+7 x^2+52 x$
- $y^2=13 x^6+46 x^5+23 x^4+5 x^3+13 x^2+12 x+47$
- $y^2=26 x^6+14 x^5+52 x^4+7 x^3+9 x^2+42 x+36$
- $y^2=48 x^6+51 x^5+19 x^4+40 x^3+4 x^2+10 x+2$
- $y^2=23 x^6+4 x^5+36 x^4+8 x^3+15 x^2+11 x+16$
- $y^2=42 x^6+51 x^5+15 x^4+14 x^3+23 x^2+7 x+34$
- $y^2=24 x^6+47 x^5+31 x^4+45 x^3+47 x^2+15 x+3$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The isogeny class factors as 1.53.d $\times$ 1.53.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.53.an_fg | $2$ | (not in LMFDB) |
| 2.53.ah_cy | $2$ | (not in LMFDB) |
| 2.53.h_cy | $2$ | (not in LMFDB) |