L(s) = 1 | + 3-s − 2·4-s + 9-s + 6·11-s − 2·12-s + 4·16-s − 6·17-s − 5·19-s − 7·25-s + 27-s + 6·33-s − 2·36-s + 12·41-s − 8·43-s − 12·44-s + 4·48-s − 10·49-s − 6·51-s − 5·57-s − 12·59-s − 8·64-s + 4·67-s + 12·68-s − 14·73-s − 7·75-s + 10·76-s + 81-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 4-s + 1/3·9-s + 1.80·11-s − 0.577·12-s + 16-s − 1.45·17-s − 1.14·19-s − 7/5·25-s + 0.192·27-s + 1.04·33-s − 1/3·36-s + 1.87·41-s − 1.21·43-s − 1.80·44-s + 0.577·48-s − 1.42·49-s − 0.840·51-s − 0.662·57-s − 1.56·59-s − 64-s + 0.488·67-s + 1.45·68-s − 1.63·73-s − 0.808·75-s + 1.14·76-s + 1/9·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.649104193\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.649104193\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.563497278700290888620524010249, −7.966484915623761323084338620176, −7.66299988950717275812294072722, −7.05400557880213236769602564027, −6.43474905653207082814548190816, −6.20978127019246724026930390945, −5.80839166685291372517676793286, −4.79804736690050296105935963580, −4.48200443293133298846670201165, −4.27373598076492906170712687702, −3.49932968965872422126062563954, −3.30713955274411311480361647815, −2.04880471576545946504161014634, −1.84489244953144007794527574189, −0.63790681358635891467654372908,
0.63790681358635891467654372908, 1.84489244953144007794527574189, 2.04880471576545946504161014634, 3.30713955274411311480361647815, 3.49932968965872422126062563954, 4.27373598076492906170712687702, 4.48200443293133298846670201165, 4.79804736690050296105935963580, 5.80839166685291372517676793286, 6.20978127019246724026930390945, 6.43474905653207082814548190816, 7.05400557880213236769602564027, 7.66299988950717275812294072722, 7.966484915623761323084338620176, 8.563497278700290888620524010249