Properties

Label 2.13.a_al
Base field $\F_{13}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{13}$
Dimension:  $2$
L-polynomial:  $1 - 11 x^{2} + 169 x^{4}$
Frobenius angles:  $\pm0.180475001423$, $\pm0.819524998577$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-15}, \sqrt{37})\)
Galois group:  $C_2^2$
Jacobians:  $6$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $159$ $25281$ $4831056$ $828230841$ $137857884639$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $14$ $148$ $2198$ $28996$ $371294$ $4835302$ $62748518$ $815750788$ $10604499374$ $137857277428$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{13^{2}}$.

Endomorphism algebra over $\F_{13}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-15}, \sqrt{37})\).
Endomorphism algebra over $\overline{\F}_{13}$
The base change of $A$ to $\F_{13^{2}}$ is 1.169.al 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-555}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.13.a_l$4$(not in LMFDB)