L(s) = 1 | + 2·3-s + 4-s − 3·5-s + 4·7-s + 3·9-s + 3·11-s + 2·12-s − 9·13-s − 6·15-s − 3·16-s − 3·17-s + 3·19-s − 3·20-s + 8·21-s + 15·23-s + 25-s + 4·27-s + 4·28-s + 3·31-s + 6·33-s − 12·35-s + 3·36-s − 10·37-s − 18·39-s − 9·41-s + 3·44-s − 9·45-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 1/2·4-s − 1.34·5-s + 1.51·7-s + 9-s + 0.904·11-s + 0.577·12-s − 2.49·13-s − 1.54·15-s − 3/4·16-s − 0.727·17-s + 0.688·19-s − 0.670·20-s + 1.74·21-s + 3.12·23-s + 1/5·25-s + 0.769·27-s + 0.755·28-s + 0.538·31-s + 1.04·33-s − 2.02·35-s + 1/2·36-s − 1.64·37-s − 2.88·39-s − 1.40·41-s + 0.452·44-s − 1.34·45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 603729 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.002529759\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.002529759\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.67374854323516347921736165202, −10.05898011469377144668178664386, −9.452801077343685450129494744849, −9.150877181537019773928210501423, −8.792959291498559513358310336714, −8.447081613247916558407245274188, −7.76472956366667918868060209831, −7.43133223557508539181114710396, −7.42477287891220397249124086922, −6.68656629510633089481245553761, −6.66024007930809264844545837944, −5.24129614062571416970034750933, −4.84173113936830748167255201973, −4.79335630998417527937261911664, −4.19523524083057090783805211931, −3.24572471517519653198445134456, −3.23647590713636402959424961405, −2.08458978215859483380174928232, −2.07773424736350368863779423294, −0.830914611290480651833758326347,
0.830914611290480651833758326347, 2.07773424736350368863779423294, 2.08458978215859483380174928232, 3.23647590713636402959424961405, 3.24572471517519653198445134456, 4.19523524083057090783805211931, 4.79335630998417527937261911664, 4.84173113936830748167255201973, 5.24129614062571416970034750933, 6.66024007930809264844545837944, 6.68656629510633089481245553761, 7.42477287891220397249124086922, 7.43133223557508539181114710396, 7.76472956366667918868060209831, 8.447081613247916558407245274188, 8.792959291498559513358310336714, 9.150877181537019773928210501423, 9.452801077343685450129494744849, 10.05898011469377144668178664386, 10.67374854323516347921736165202