| L(s) = 1 | − 5·9-s + 6·13-s + 6·17-s + 10·25-s − 2·29-s + 12·37-s − 5·49-s − 2·53-s + 6·73-s + 16·81-s − 18·109-s − 30·117-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 30·153-s + 157-s + 163-s + 167-s + 169-s + 173-s + 179-s + 181-s + ⋯ |
| L(s) = 1 | − 5/3·9-s + 1.66·13-s + 1.45·17-s + 2·25-s − 0.371·29-s + 1.97·37-s − 5/7·49-s − 0.274·53-s + 0.702·73-s + 16/9·81-s − 1.72·109-s − 2.77·117-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 2.42·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1/13·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 739328 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 739328 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.039381637\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.039381637\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.198756302579373184438464485610, −8.033711221863498163412112505556, −7.56105964780757381977062698937, −6.80772265126106879091598745037, −6.42746415180518078389640033322, −6.01455507612461530329647528693, −5.59324354159366978587093356376, −5.23788503197695929628445168517, −4.62235309372838785711525884113, −3.94244083248322658277381436869, −3.35711507579402047318520084256, −3.02316528850583213020940304971, −2.49331505172094797326240869789, −1.41167529829377980851763217011, −0.76692217829493386761159836301,
0.76692217829493386761159836301, 1.41167529829377980851763217011, 2.49331505172094797326240869789, 3.02316528850583213020940304971, 3.35711507579402047318520084256, 3.94244083248322658277381436869, 4.62235309372838785711525884113, 5.23788503197695929628445168517, 5.59324354159366978587093356376, 6.01455507612461530329647528693, 6.42746415180518078389640033322, 6.80772265126106879091598745037, 7.56105964780757381977062698937, 8.033711221863498163412112505556, 8.198756302579373184438464485610