L(s) = 1 | + 8·5-s − 2·19-s + 8·23-s + 38·25-s − 16·43-s − 24·47-s − 5·49-s − 16·53-s + 22·67-s + 16·71-s + 2·73-s − 16·95-s + 10·97-s + 64·115-s − 6·121-s + 136·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 25·169-s + 173-s + ⋯ |
L(s) = 1 | + 3.57·5-s − 0.458·19-s + 1.66·23-s + 38/5·25-s − 2.43·43-s − 3.50·47-s − 5/7·49-s − 2.19·53-s + 2.68·67-s + 1.89·71-s + 0.234·73-s − 1.64·95-s + 1.01·97-s + 5.96·115-s − 0.545·121-s + 12.1·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.92·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.899036666\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.899036666\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.806587663978251937370981617555, −8.401866546043067452666777829857, −7.938743397969043584573887403119, −6.83361756772483196040188421834, −6.65045650092432229207532369718, −6.44248673632066345518308551587, −5.96792011154325891433457977771, −5.14803643650686365420219259306, −5.10755730919050596352378085939, −4.81675214534703865809257184279, −3.36478379045069074059258347613, −3.04682102297854825793595716610, −2.20593526227161583330529036984, −1.81832624891237728767312244270, −1.27143319370400675106679280463,
1.27143319370400675106679280463, 1.81832624891237728767312244270, 2.20593526227161583330529036984, 3.04682102297854825793595716610, 3.36478379045069074059258347613, 4.81675214534703865809257184279, 5.10755730919050596352378085939, 5.14803643650686365420219259306, 5.96792011154325891433457977771, 6.44248673632066345518308551587, 6.65045650092432229207532369718, 6.83361756772483196040188421834, 7.938743397969043584573887403119, 8.401866546043067452666777829857, 8.806587663978251937370981617555