L(s) = 1 | − 2·2-s + 2·4-s + 5·7-s − 10·14-s − 4·16-s − 4·17-s + 8·23-s − 3·25-s + 10·28-s + 4·31-s + 8·32-s + 8·34-s + 4·41-s − 16·46-s + 12·47-s + 7·49-s + 6·50-s − 8·62-s − 8·64-s − 8·68-s − 12·71-s + 15·73-s + 2·79-s − 8·82-s − 20·89-s + 16·92-s − 24·94-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 4-s + 1.88·7-s − 2.67·14-s − 16-s − 0.970·17-s + 1.66·23-s − 3/5·25-s + 1.88·28-s + 0.718·31-s + 1.41·32-s + 1.37·34-s + 0.624·41-s − 2.35·46-s + 1.75·47-s + 49-s + 0.848·50-s − 1.01·62-s − 64-s − 0.970·68-s − 1.42·71-s + 1.75·73-s + 0.225·79-s − 0.883·82-s − 2.11·89-s + 1.66·92-s − 2.47·94-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8195001340\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8195001340\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.13406517822517540415991980029, −9.508945804322141365448729514116, −9.043275478727530859761826686634, −8.581411912559862447400176029117, −8.246244534258173635557406789226, −7.68677947931311725879504343322, −7.24528488548728832255956470863, −6.75125048746113267444674472732, −5.91420727417963782021867240501, −5.11913315620451330754535000136, −4.63596909164702535252832687134, −4.09364766916069031941739700137, −2.73020780463111989951793154185, −1.94893279693844340479685212296, −1.08464236819152012197175855629,
1.08464236819152012197175855629, 1.94893279693844340479685212296, 2.73020780463111989951793154185, 4.09364766916069031941739700137, 4.63596909164702535252832687134, 5.11913315620451330754535000136, 5.91420727417963782021867240501, 6.75125048746113267444674472732, 7.24528488548728832255956470863, 7.68677947931311725879504343322, 8.246244534258173635557406789226, 8.581411912559862447400176029117, 9.043275478727530859761826686634, 9.508945804322141365448729514116, 10.13406517822517540415991980029