Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 13 x + 79 x^{2} )( 1 + 11 x + 79 x^{2} )$ |
$1 - 2 x + 15 x^{2} - 158 x^{3} + 6241 x^{4}$ | |
Frobenius angles: | $\pm0.238910621905$, $\pm0.712380201669$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $420$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6097$ | $39124449$ | $242894041936$ | $1518023339399385$ | $9468489689934251977$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $78$ | $6268$ | $492648$ | $38973556$ | $3077125818$ | $243087018046$ | $19203913225302$ | $1517108689413796$ | $119851595175686712$ | $9468276086220447628$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 420 curves (of which all are hyperelliptic):
- $y^2=21 x^6+67 x^5+2 x^4+42 x^3+8 x^2+39 x+11$
- $y^2=10 x^6+75 x^5+39 x^4+11 x^3+45 x^2+19 x+56$
- $y^2=74 x^6+21 x^5+73 x^4+64 x^3+59 x^2+71 x+12$
- $y^2=39 x^6+66 x^5+11 x^4+42 x^3+78 x^2+47 x+35$
- $y^2=21 x^6+50 x^5+x^4+71 x^3+43 x^2+31 x+15$
- $y^2=21 x^6+59 x^5+42 x^4+30 x^3+39 x^2+25 x+62$
- $y^2=11 x^6+50 x^5+75 x^4+47 x^3+7 x^2+75 x+10$
- $y^2=40 x^6+17 x^5+62 x^4+7 x^3+53 x^2+50 x+57$
- $y^2=76 x^6+56 x^4+73 x^3+56 x^2+76$
- $y^2=62 x^6+16 x^5+67 x^4+78 x^3+67 x^2+16 x+62$
- $y^2=11 x^6+26 x^5+49 x^3+9 x^2+76 x+40$
- $y^2=11 x^6+43 x^5+35 x^4+70 x^3+57 x^2+77 x+66$
- $y^2=21 x^6+60 x^5+23 x^4+26 x^3+14 x^2+76 x+23$
- $y^2=64 x^6+27 x^5+26 x^4+52 x^3+55 x^2+70 x+23$
- $y^2=77 x^6+12 x^5+73 x^4+56 x^3+16 x^2+59 x+38$
- $y^2=61 x^6+34 x^5+26 x^4+32 x^3+69 x^2+62 x+47$
- $y^2=65 x^6+28 x^5+73 x^4+78 x^3+27 x^2+43 x+25$
- $y^2=75 x^6+10 x^5+10 x^4+55 x^3+70 x^2+21 x+78$
- $y^2=58 x^6+61 x^5+77 x^4+54 x^3+4 x^2+68 x+17$
- $y^2=x^6+23 x^5+78 x^4+18 x^3+75 x^2+35 x+78$
- and 400 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$The isogeny class factors as 1.79.an $\times$ 1.79.l and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.