Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 17 x^{2} + 1369 x^{4}$ |
| Frobenius angles: | $\pm0.286892112040$, $\pm0.713107887960$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{57}, \sqrt{-91})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $56$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1387$ | $1923769$ | $2565661504$ | $3521668845321$ | $4808584499511907$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $38$ | $1404$ | $50654$ | $1879060$ | $69343958$ | $2565596598$ | $94931877134$ | $3512474955364$ | $129961739795078$ | $4808584626605964$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=33 x^6+18 x^5+32 x^4+9 x^3+7 x^2+17$
- $y^2=24 x^6+5 x^5+23 x^4+17 x^3+13 x^2+17$
- $y^2=11 x^6+10 x^5+9 x^4+34 x^3+26 x^2+34$
- $y^2=2 x^6+17 x^5+23 x^4+11 x^3+16 x^2+10 x+11$
- $y^2=12 x^6+26 x^5+9 x^4+35 x^3+3 x^2+33 x+13$
- $y^2=24 x^6+15 x^5+18 x^4+33 x^3+6 x^2+29 x+26$
- $y^2=13 x^6+16 x^5+25 x^4+28 x^3+30 x^2+27 x+16$
- $y^2=26 x^6+32 x^5+13 x^4+19 x^3+23 x^2+17 x+32$
- $y^2=16 x^6+28 x^5+6 x^4+15 x^3+23 x^2+34 x+6$
- $y^2=15 x^6+33 x^5+17 x^4+24 x^3+11 x^2+x+19$
- $y^2=35 x^6+10 x^5+10 x^4+30 x^3+33 x^2+4 x+15$
- $y^2=33 x^6+20 x^5+20 x^4+23 x^3+29 x^2+8 x+30$
- $y^2=29 x^6+8 x^5+34 x^4+27 x^3+17 x^2+9 x+34$
- $y^2=21 x^6+16 x^5+31 x^4+17 x^3+34 x^2+18 x+31$
- $y^2=17 x^6+28 x^5+19 x^4+22 x^3+8 x^2+26 x+24$
- $y^2=34 x^6+19 x^5+x^4+7 x^3+16 x^2+15 x+11$
- $y^2=11 x^6+2 x^5+35 x^4+35 x^3+31 x^2+11$
- $y^2=14 x^6+32 x^5+x^4+27 x^3+24 x^2+31 x+4$
- $y^2=28 x^6+27 x^5+2 x^4+17 x^3+11 x^2+25 x+8$
- $y^2=29 x^6+22 x^5+11 x^4+36 x^3+11 x^2+20 x+11$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37^{2}}$.
Endomorphism algebra over $\F_{37}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{57}, \sqrt{-91})\). |
| The base change of $A$ to $\F_{37^{2}}$ is 1.1369.r 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-5187}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.37.a_ar | $4$ | (not in LMFDB) |