Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 23 x^{2} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.219814740337$, $\pm0.780185259663$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-11}, \sqrt{145})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $264$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $3$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3699$ | $13682601$ | $51520618944$ | $191898821090025$ | $713342910290541579$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $62$ | $3676$ | $226982$ | $13859668$ | $844596302$ | $51520863526$ | $3142742836022$ | $191707272801508$ | $11694146092834142$ | $713342908918200556$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 264 curves (of which all are hyperelliptic):
- $y^2=42 x^6+x^5+52 x^4+21 x^3+30 x^2+45 x+11$
- $y^2=x^6+55 x^5+2 x^4+51 x^3+25 x^2+20 x+30$
- $y^2=2 x^6+49 x^5+4 x^4+41 x^3+50 x^2+40 x+60$
- $y^2=24 x^6+x^5+25 x^4+37 x^3+40 x^2+53 x+28$
- $y^2=3 x^6+35 x^5+22 x^4+11 x^3+58 x^2+13 x+39$
- $y^2=6 x^6+9 x^5+44 x^4+22 x^3+55 x^2+26 x+17$
- $y^2=11 x^6+47 x^5+x^4+6 x^3+30 x^2+41 x+32$
- $y^2=22 x^6+33 x^5+2 x^4+12 x^3+60 x^2+21 x+3$
- $y^2=12 x^6+42 x^5+24 x^4+32 x^3+17 x^2+17 x+57$
- $y^2=24 x^6+23 x^5+48 x^4+3 x^3+34 x^2+34 x+53$
- $y^2=7 x^6+51 x^5+33 x^4+22 x^3+56 x^2+43 x+2$
- $y^2=14 x^6+41 x^5+5 x^4+44 x^3+51 x^2+25 x+4$
- $y^2=56 x^6+12 x^5+30 x^4+3 x^3+41 x^2+16 x+38$
- $y^2=51 x^6+24 x^5+60 x^4+6 x^3+21 x^2+32 x+15$
- $y^2=40 x^6+9 x^5+41 x^4+25 x^3+26 x^2+24 x+57$
- $y^2=19 x^6+18 x^5+21 x^4+50 x^3+52 x^2+48 x+53$
- $y^2=43 x^6+57 x^5+41 x^4+46 x^3+59 x^2+15 x+37$
- $y^2=46 x^6+40 x^5+53 x^4+11 x^3+25 x^2+49 x+49$
- $y^2=31 x^6+19 x^5+45 x^4+22 x^3+50 x^2+37 x+37$
- $y^2=18 x^6+50 x^5+57 x^4+55 x^3+57 x^2+36 x+41$
- and 244 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{2}}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-11}, \sqrt{145})\). |
| The base change of $A$ to $\F_{61^{2}}$ is 1.3721.ax 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1595}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.61.a_x | $4$ | (not in LMFDB) |