L(s) = 1 | − 2-s − 2·4-s − 4·7-s + 3·8-s − 9-s + 4·11-s + 4·14-s + 16-s − 2·17-s + 18-s + 4·19-s − 4·22-s − 12·23-s + 8·28-s − 6·29-s − 2·32-s + 2·34-s + 2·36-s − 6·37-s − 4·38-s + 6·41-s + 8·43-s − 8·44-s + 12·46-s − 8·47-s + 3·49-s − 12·53-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 4-s − 1.51·7-s + 1.06·8-s − 1/3·9-s + 1.20·11-s + 1.06·14-s + 1/4·16-s − 0.485·17-s + 0.235·18-s + 0.917·19-s − 0.852·22-s − 2.50·23-s + 1.51·28-s − 1.11·29-s − 0.353·32-s + 0.342·34-s + 1/3·36-s − 0.986·37-s − 0.648·38-s + 0.937·41-s + 1.21·43-s − 1.20·44-s + 1.76·46-s − 1.16·47-s + 3/7·49-s − 1.64·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 17850625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17850625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.347335800920543497321056727103, −7.891020470638358748050442508901, −7.66216578485817698630883305911, −7.10333643785448412046456784863, −6.82648345573417059571305761680, −6.24997722291685600076052178965, −6.19868354538622317846590729564, −5.65345086848535316835190627288, −5.39738957406433613297415107109, −4.76320314526641552223380149261, −4.22515343568829924969986309058, −4.09344021881331229013426994023, −3.61029668018814669742955620150, −3.30252252402054877417439070975, −2.74936908844570000786376049919, −2.08057816170988343724375407856, −1.59035537353730054684932430914, −0.909849145766315883704496109797, 0, 0,
0.909849145766315883704496109797, 1.59035537353730054684932430914, 2.08057816170988343724375407856, 2.74936908844570000786376049919, 3.30252252402054877417439070975, 3.61029668018814669742955620150, 4.09344021881331229013426994023, 4.22515343568829924969986309058, 4.76320314526641552223380149261, 5.39738957406433613297415107109, 5.65345086848535316835190627288, 6.19868354538622317846590729564, 6.24997722291685600076052178965, 6.82648345573417059571305761680, 7.10333643785448412046456784863, 7.66216578485817698630883305911, 7.891020470638358748050442508901, 8.347335800920543497321056727103