Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 6 x + 47 x^{2} + 174 x^{3} + 841 x^{4}$ |
Frobenius angles: | $\pm0.456355381050$, $\pm0.744051751727$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.171225.1 |
Galois group: | $D_{4}$ |
Jacobians: | $40$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1069$ | $757921$ | $592208896$ | $500416582329$ | $420471142083949$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $36$ | $900$ | $24282$ | $707524$ | $20499636$ | $594851046$ | $17250299844$ | $500244368644$ | $14507143194978$ | $420707249057700$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):
- $y^2=4 x^6+8 x^5+24 x^4+9 x^3+11 x^2+7 x+13$
- $y^2=x^6+12 x^5+23 x^4+22 x^3+3 x^2+9 x+11$
- $y^2=16 x^6+14 x^5+9 x^4+14 x^3+8 x^2+27 x+18$
- $y^2=16 x^6+17 x^5+25 x^4+20 x^3+4 x^2+3$
- $y^2=28 x^6+18 x^5+x^4+9 x^3+11 x^2+15 x+8$
- $y^2=5 x^6+27 x^5+5 x^4+19 x^3+21 x^2+21 x+12$
- $y^2=28 x^6+16 x^5+5 x^4+13 x^3+6 x^2+12 x+19$
- $y^2=22 x^6+13 x^5+13 x^4+6 x^3+5 x^2+7 x+19$
- $y^2=4 x^6+12 x^5+13 x^4+20 x^3+25 x^2+4 x+27$
- $y^2=25 x^6+7 x^5+11 x^4+28 x^3+23 x^2+7 x+18$
- $y^2=22 x^6+17 x^5+28 x^3+28 x^2+17 x+23$
- $y^2=16 x^6+21 x^5+11 x^4+20 x^3+26 x^2+6$
- $y^2=17 x^6+26 x^5+19 x^4+3 x^3+6 x^2+9 x+13$
- $y^2=7 x^6+27 x^5+x^4+17 x^3+11 x^2+8 x+3$
- $y^2=2 x^6+24 x^5+8 x^4+6 x^3+3 x^2+28 x+3$
- $y^2=16 x^6+27 x^5+15 x^4+17 x^3+2 x^2+24 x+19$
- $y^2=16 x^6+25 x^5+22 x^4+23 x^3+17 x^2+23 x+5$
- $y^2=14 x^6+19 x^5+15 x^4+13 x^3+22 x^2+15 x+22$
- $y^2=x^6+17 x^5+14 x^4+9 x^3+10 x^2+17 x+1$
- $y^2=3 x^6+3 x^5+x^4+10 x^3+27 x^2+10 x+16$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The endomorphism algebra of this simple isogeny class is 4.0.171225.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.ag_bv | $2$ | (not in LMFDB) |