L(s) = 1 | + 3-s + 4-s + 9-s + 12-s + 16-s − 10·25-s + 27-s + 8·31-s + 36-s + 4·37-s + 48-s − 49-s + 64-s + 24·67-s − 10·75-s + 81-s + 8·93-s + 12·97-s − 10·100-s + 8·103-s + 108-s + 4·111-s − 11·121-s + 8·124-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/2·4-s + 1/3·9-s + 0.288·12-s + 1/4·16-s − 2·25-s + 0.192·27-s + 1.43·31-s + 1/6·36-s + 0.657·37-s + 0.144·48-s − 1/7·49-s + 1/8·64-s + 2.93·67-s − 1.15·75-s + 1/9·81-s + 0.829·93-s + 1.21·97-s − 100-s + 0.788·103-s + 0.0962·108-s + 0.379·111-s − 121-s + 0.718·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 640332 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640332 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.751608890\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.751608890\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.165678724980624284870488143424, −7.981890914755466295548007347155, −7.64538706777287483750863078199, −7.00445772168504758614495384146, −6.59548489878523284918699906331, −6.20320870755204265643405675642, −5.65395983582694389889196901818, −5.19773949443833088629459235218, −4.48080129460261086295385087598, −4.07187884298526393281892225726, −3.50422169579393696238500782132, −2.94162149280893570398308614899, −2.27080885217504090145569675475, −1.85015606075908436048505984956, −0.809374100474558800250065491858,
0.809374100474558800250065491858, 1.85015606075908436048505984956, 2.27080885217504090145569675475, 2.94162149280893570398308614899, 3.50422169579393696238500782132, 4.07187884298526393281892225726, 4.48080129460261086295385087598, 5.19773949443833088629459235218, 5.65395983582694389889196901818, 6.20320870755204265643405675642, 6.59548489878523284918699906331, 7.00445772168504758614495384146, 7.64538706777287483750863078199, 7.981890914755466295548007347155, 8.165678724980624284870488143424