L(s) = 1 | − 2-s − 2·5-s + 5·7-s + 8-s − 3·9-s + 2·10-s + 4·13-s − 5·14-s − 16-s + 3·18-s − 2·19-s − 6·23-s + 3·25-s − 4·26-s − 6·29-s − 2·31-s − 10·35-s − 2·37-s + 2·38-s − 2·40-s + 6·41-s − 11·43-s + 6·45-s + 6·46-s − 3·47-s + 18·49-s − 3·50-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.894·5-s + 1.88·7-s + 0.353·8-s − 9-s + 0.632·10-s + 1.10·13-s − 1.33·14-s − 1/4·16-s + 0.707·18-s − 0.458·19-s − 1.25·23-s + 3/5·25-s − 0.784·26-s − 1.11·29-s − 0.359·31-s − 1.69·35-s − 0.328·37-s + 0.324·38-s − 0.316·40-s + 0.937·41-s − 1.67·43-s + 0.894·45-s + 0.884·46-s − 0.437·47-s + 18/7·49-s − 0.424·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9523401494\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9523401494\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.88741426681734605243000871393, −10.52591122944593524669596684618, −10.04557647289185315862073001385, −9.183435749433055020992111056622, −9.068241217639469572189898751686, −8.517613256738800973518775491405, −8.183991809757939425599967029202, −7.87533795619137456209992011787, −7.66241324630804466876256931079, −6.99938291930451960078344501311, −6.21236589474602714734167716556, −5.98990839337433223549129974135, −5.10926627013905223942936838720, −4.96781886722876288189389393853, −4.22071208995311141910102671992, −3.75119850905001692844385292102, −3.22817420859700057861671935877, −2.06662697538065731421792078632, −1.75029111118558796715361744192, −0.61640524746042132259195005021,
0.61640524746042132259195005021, 1.75029111118558796715361744192, 2.06662697538065731421792078632, 3.22817420859700057861671935877, 3.75119850905001692844385292102, 4.22071208995311141910102671992, 4.96781886722876288189389393853, 5.10926627013905223942936838720, 5.98990839337433223549129974135, 6.21236589474602714734167716556, 6.99938291930451960078344501311, 7.66241324630804466876256931079, 7.87533795619137456209992011787, 8.183991809757939425599967029202, 8.517613256738800973518775491405, 9.068241217639469572189898751686, 9.183435749433055020992111056622, 10.04557647289185315862073001385, 10.52591122944593524669596684618, 10.88741426681734605243000871393