L(s) = 1 | + 4-s − 2·5-s − 4·7-s + 16-s + 8·17-s − 2·20-s − 25-s − 4·28-s + 8·35-s + 8·37-s − 8·41-s + 9·49-s − 20·59-s + 64-s + 8·68-s + 24·79-s − 2·80-s + 16·83-s − 16·85-s − 16·89-s − 100-s − 12·101-s − 20·109-s − 4·112-s − 32·119-s + 6·121-s + 12·125-s + ⋯ |
L(s) = 1 | + 1/2·4-s − 0.894·5-s − 1.51·7-s + 1/4·16-s + 1.94·17-s − 0.447·20-s − 1/5·25-s − 0.755·28-s + 1.35·35-s + 1.31·37-s − 1.24·41-s + 9/7·49-s − 2.60·59-s + 1/8·64-s + 0.970·68-s + 2.70·79-s − 0.223·80-s + 1.75·83-s − 1.73·85-s − 1.69·89-s − 0.0999·100-s − 1.19·101-s − 1.91·109-s − 0.377·112-s − 2.93·119-s + 6/11·121-s + 1.07·125-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.222625470\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.222625470\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.526304573354618889859551744321, −8.042348491847199751941450893204, −7.74045876955467714798582623577, −7.36458787254134938292452182615, −6.75477726662937101297022639377, −6.40286336252377882114135323366, −5.90668267447385309393848192863, −5.47690816377993950303524300391, −4.80040668774363214792997040300, −4.10250727905773115014405068812, −3.53147883433701775898595880006, −3.21423536413491151318727725736, −2.71868394026060869490662576144, −1.67275795887950100619880491148, −0.61262454905339192166777130008,
0.61262454905339192166777130008, 1.67275795887950100619880491148, 2.71868394026060869490662576144, 3.21423536413491151318727725736, 3.53147883433701775898595880006, 4.10250727905773115014405068812, 4.80040668774363214792997040300, 5.47690816377993950303524300391, 5.90668267447385309393848192863, 6.40286336252377882114135323366, 6.75477726662937101297022639377, 7.36458787254134938292452182615, 7.74045876955467714798582623577, 8.042348491847199751941450893204, 8.526304573354618889859551744321