L(s) = 1 | + 2-s − 3-s − 4-s − 6-s − 4·7-s − 3·8-s + 9-s + 12-s − 4·14-s − 16-s + 18-s − 2·19-s + 4·21-s + 3·24-s + 6·25-s − 27-s + 4·28-s − 10·29-s + 5·32-s − 36-s − 2·38-s + 2·41-s + 4·42-s + 12·43-s + 48-s − 2·49-s + 6·50-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.408·6-s − 1.51·7-s − 1.06·8-s + 1/3·9-s + 0.288·12-s − 1.06·14-s − 1/4·16-s + 0.235·18-s − 0.458·19-s + 0.872·21-s + 0.612·24-s + 6/5·25-s − 0.192·27-s + 0.755·28-s − 1.85·29-s + 0.883·32-s − 1/6·36-s − 0.324·38-s + 0.312·41-s + 0.617·42-s + 1.82·43-s + 0.144·48-s − 2/7·49-s + 0.848·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.026788032680766408494931267817, −7.75964323250008018478458553583, −6.95506461508138895874463255855, −6.68959812679724865382932359605, −6.35080752020181678773537210788, −5.71077290534709305134481876861, −5.48589863444284288733534494699, −4.96864569759886266436590334575, −4.31099994783749933785688411911, −3.83601682084430760741688284180, −3.50691369660934219119163853261, −2.81253754681733287219030073863, −2.22664346453673729573198760718, −0.925750835916661847382142578094, 0,
0.925750835916661847382142578094, 2.22664346453673729573198760718, 2.81253754681733287219030073863, 3.50691369660934219119163853261, 3.83601682084430760741688284180, 4.31099994783749933785688411911, 4.96864569759886266436590334575, 5.48589863444284288733534494699, 5.71077290534709305134481876861, 6.35080752020181678773537210788, 6.68959812679724865382932359605, 6.95506461508138895874463255855, 7.75964323250008018478458553583, 8.026788032680766408494931267817