L(s) = 1 | − 2-s + 3-s + 4-s − 6-s − 8-s + 9-s + 12-s + 16-s − 18-s + 2·19-s − 24-s + 2·25-s + 27-s + 14·29-s − 32-s + 36-s − 2·38-s + 14·41-s + 4·43-s + 48-s − 10·49-s − 2·50-s − 10·53-s − 54-s + 2·57-s − 14·58-s + 12·59-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.288·12-s + 1/4·16-s − 0.235·18-s + 0.458·19-s − 0.204·24-s + 2/5·25-s + 0.192·27-s + 2.59·29-s − 0.176·32-s + 1/6·36-s − 0.324·38-s + 2.18·41-s + 0.609·43-s + 0.144·48-s − 1.42·49-s − 0.282·50-s − 1.37·53-s − 0.136·54-s + 0.264·57-s − 1.83·58-s + 1.56·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.896882838\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.896882838\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.464285392266424663929213439399, −7.986237060436625361103869596655, −7.64084036516900287560552417530, −7.07856249620893156480448347167, −6.78186504535928796675893061600, −6.08213828605181351171017922528, −5.93913423463641034444986857125, −4.97413152367818321297995387876, −4.70373187977964433046919900150, −4.06463866818455884200497669592, −3.39070489301162048479309034347, −2.76952847741667438604206140239, −2.48179111345703279268915095192, −1.48699070939147802447318199330, −0.812856957188175653390279653740,
0.812856957188175653390279653740, 1.48699070939147802447318199330, 2.48179111345703279268915095192, 2.76952847741667438604206140239, 3.39070489301162048479309034347, 4.06463866818455884200497669592, 4.70373187977964433046919900150, 4.97413152367818321297995387876, 5.93913423463641034444986857125, 6.08213828605181351171017922528, 6.78186504535928796675893061600, 7.07856249620893156480448347167, 7.64084036516900287560552417530, 7.986237060436625361103869596655, 8.464285392266424663929213439399