L(s) = 1 | + 2·2-s − 3-s + 2·4-s − 2·6-s − 2·7-s + 9-s − 2·12-s − 4·14-s − 4·16-s + 2·18-s + 4·19-s + 2·21-s + 3·25-s − 27-s − 4·28-s + 6·29-s − 8·32-s + 2·36-s + 8·38-s + 12·41-s + 4·42-s + 4·48-s − 7·49-s + 6·50-s − 16·53-s − 2·54-s − 4·57-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 0.577·3-s + 4-s − 0.816·6-s − 0.755·7-s + 1/3·9-s − 0.577·12-s − 1.06·14-s − 16-s + 0.471·18-s + 0.917·19-s + 0.436·21-s + 3/5·25-s − 0.192·27-s − 0.755·28-s + 1.11·29-s − 1.41·32-s + 1/3·36-s + 1.29·38-s + 1.87·41-s + 0.617·42-s + 0.577·48-s − 49-s + 0.848·50-s − 2.19·53-s − 0.272·54-s − 0.529·57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.725542240\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.725542240\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.277428130720311882410021609053, −7.72074019123892367060058219860, −7.40252425866461248577478481593, −6.66975269698908495708139711285, −6.45210028139883725944800467893, −6.09046766708034068285154203500, −5.63925540470909806777829255198, −4.92808060694292525213902864506, −4.81403449653729736363829507663, −4.24668130207193891813902026749, −3.54008919605456352382344280653, −3.13998640588981906978207603314, −2.70203224365569508635180457474, −1.78164709440621181415033988656, −0.68723497118330371982244874581,
0.68723497118330371982244874581, 1.78164709440621181415033988656, 2.70203224365569508635180457474, 3.13998640588981906978207603314, 3.54008919605456352382344280653, 4.24668130207193891813902026749, 4.81403449653729736363829507663, 4.92808060694292525213902864506, 5.63925540470909806777829255198, 6.09046766708034068285154203500, 6.45210028139883725944800467893, 6.66975269698908495708139711285, 7.40252425866461248577478481593, 7.72074019123892367060058219860, 8.277428130720311882410021609053