L(s) = 1 | − 2-s − 3-s + 4-s + 6-s − 6·7-s − 8-s + 9-s − 12-s + 6·14-s + 16-s − 18-s + 4·19-s + 6·21-s + 24-s − 4·25-s − 27-s − 6·28-s + 8·29-s − 32-s + 36-s − 4·38-s − 14·41-s − 6·42-s + 8·43-s − 48-s + 14·49-s + 4·50-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 2.26·7-s − 0.353·8-s + 1/3·9-s − 0.288·12-s + 1.60·14-s + 1/4·16-s − 0.235·18-s + 0.917·19-s + 1.30·21-s + 0.204·24-s − 4/5·25-s − 0.192·27-s − 1.13·28-s + 1.48·29-s − 0.176·32-s + 1/6·36-s − 0.648·38-s − 2.18·41-s − 0.925·42-s + 1.21·43-s − 0.144·48-s + 2·49-s + 0.565·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4798670392\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4798670392\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.343018439984546389257898993184, −8.031659682610873255204695144506, −7.28087395783489260352159508008, −7.06367193358233306020084017852, −6.56585551068497569527696059127, −6.21301993726660510715823951255, −5.91316304692042311134144103720, −5.23167748159334541864511223091, −4.77961749935921841231192928719, −3.84400345747102080111828166468, −3.54084738699049371014332404871, −2.93699818054910732426911985544, −2.41901334891264587250948678341, −1.35468836201213068672382672790, −0.42501605703668058217811839912,
0.42501605703668058217811839912, 1.35468836201213068672382672790, 2.41901334891264587250948678341, 2.93699818054910732426911985544, 3.54084738699049371014332404871, 3.84400345747102080111828166468, 4.77961749935921841231192928719, 5.23167748159334541864511223091, 5.91316304692042311134144103720, 6.21301993726660510715823951255, 6.56585551068497569527696059127, 7.06367193358233306020084017852, 7.28087395783489260352159508008, 8.031659682610873255204695144506, 8.343018439984546389257898993184