L(s) = 1 | + 3-s + 4-s − 2·9-s + 12-s − 4·13-s + 16-s − 5·17-s + 10·23-s + 4·25-s − 5·27-s + 5·29-s − 2·36-s − 4·39-s + 13·43-s + 48-s − 49-s − 5·51-s − 4·52-s − 5·53-s + 11·61-s + 64-s − 5·68-s + 10·69-s + 4·75-s + 15·79-s + 81-s + 5·87-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/2·4-s − 2/3·9-s + 0.288·12-s − 1.10·13-s + 1/4·16-s − 1.21·17-s + 2.08·23-s + 4/5·25-s − 0.962·27-s + 0.928·29-s − 1/3·36-s − 0.640·39-s + 1.98·43-s + 0.144·48-s − 1/7·49-s − 0.700·51-s − 0.554·52-s − 0.686·53-s + 1.40·61-s + 1/8·64-s − 0.606·68-s + 1.20·69-s + 0.461·75-s + 1.68·79-s + 1/9·81-s + 0.536·87-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 298116 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 298116 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.149123677\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.149123677\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.899198117292689499998569262421, −8.380847350327317158529368266934, −7.977331630548056092823738471662, −7.32771431900706671606297186236, −7.02369603426926566287949498718, −6.62382441085734171859436157986, −6.03347318609907285114506624894, −5.41741818021727729361528818109, −4.86184814183700460104797633128, −4.51976303116973255073994966655, −3.66336985164001797844791413720, −2.95796843295683148107206613295, −2.62449039200190061757987105243, −2.06833789359996254919216692370, −0.821908650580099209185103340300,
0.821908650580099209185103340300, 2.06833789359996254919216692370, 2.62449039200190061757987105243, 2.95796843295683148107206613295, 3.66336985164001797844791413720, 4.51976303116973255073994966655, 4.86184814183700460104797633128, 5.41741818021727729361528818109, 6.03347318609907285114506624894, 6.62382441085734171859436157986, 7.02369603426926566287949498718, 7.32771431900706671606297186236, 7.977331630548056092823738471662, 8.380847350327317158529368266934, 8.899198117292689499998569262421