Properties

Label 2.29.af_cg
Base field $\F_{29}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{29}$
Dimension:  $2$
L-polynomial:  $( 1 - 5 x + 29 x^{2} )( 1 + 29 x^{2} )$
  $1 - 5 x + 58 x^{2} - 145 x^{3} + 841 x^{4}$
Frobenius angles:  $\pm0.346328109963$, $\pm0.5$
Angle rank:  $1$ (numerical)
Jacobians:  $24$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $750$ $787500$ $602433000$ $499476600000$ $420583694643750$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $25$ $933$ $24700$ $706193$ $20505125$ $594824778$ $17249814425$ $500246061313$ $14507153085100$ $420707279044173$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{29^{2}}$.

Endomorphism algebra over $\F_{29}$
The isogeny class factors as 1.29.af $\times$ 1.29.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{29}$
The base change of $A$ to $\F_{29^{2}}$ is 1.841.bh $\times$ 1.841.cg. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.29.f_cg$2$(not in LMFDB)