Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 5 x + 29 x^{2} )( 1 + 29 x^{2} )$ |
$1 - 5 x + 58 x^{2} - 145 x^{3} + 841 x^{4}$ | |
Frobenius angles: | $\pm0.346328109963$, $\pm0.5$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $24$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $750$ | $787500$ | $602433000$ | $499476600000$ | $420583694643750$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $25$ | $933$ | $24700$ | $706193$ | $20505125$ | $594824778$ | $17249814425$ | $500246061313$ | $14507153085100$ | $420707279044173$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):
- $y^2=17 x^6+x^5+9 x^4+17 x^3+15 x^2+2 x+14$
- $y^2=8 x^6+6 x^5+12 x^4+13 x^3+14 x^2+18 x+21$
- $y^2=16 x^6+5 x^5+27 x^4+25 x^3+10 x^2+x+10$
- $y^2=x^5+4 x^4+24 x^3+3 x^2+12 x+16$
- $y^2=24 x^6+x^5+26 x^4+3 x^3+22 x^2+28 x+8$
- $y^2=5 x^6+5 x^5+28 x^4+24 x^3+6 x^2+19 x+23$
- $y^2=24 x^6+7 x^4+8 x^3+22 x^2+16 x+11$
- $y^2=2 x^6+4 x^5+15 x^4+6 x^3+23 x^2+11 x+26$
- $y^2=21 x^6+15 x^5+4 x^4+2 x^3+25 x^2+26 x+16$
- $y^2=17 x^6+20 x^5+12 x^4+2 x^3+7 x^2+4 x+14$
- $y^2=19 x^6+5 x^5+23 x^4+12 x^3+27 x^2+20 x+3$
- $y^2=17 x^6+25 x^5+9 x^4+5 x^3+23 x^2+21 x+4$
- $y^2=24 x^6+25 x^5+9 x^4+12 x^3+23 x+7$
- $y^2=6 x^6+7 x^5+2 x^4+15 x^3+3 x^2+22 x+13$
- $y^2=5 x^6+20 x^5+24 x^4+x^3+x^2+17 x+18$
- $y^2=13 x^6+8 x^5+3 x^4+26 x^3+13 x^2+18 x+18$
- $y^2=15 x^6+11 x^5+27 x^4+x^3+18 x+18$
- $y^2=6 x^6+27 x^5+16 x^4+5 x^3+13 x^2+21 x+14$
- $y^2=6 x^6+3 x^5+13 x^4+14 x^3+10 x^2+16 x+6$
- $y^2=8 x^6+10 x^5+28 x^4+14 x^3+x^2+16 x+4$
- $y^2=3 x^6+16 x^5+3 x^4+17 x^3+20 x^2+18 x+25$
- $y^2=15 x^6+7 x^5+22 x^4+28 x^3+18 x^2+9 x+2$
- $y^2=23 x^6+20 x^5+26 x^4+5 x^3+16 x^2+21 x+5$
- $y^2=11 x^6+21 x^4+27 x^3+x^2+x+6$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29^{2}}$.
Endomorphism algebra over $\F_{29}$The isogeny class factors as 1.29.af $\times$ 1.29.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{29^{2}}$ is 1.841.bh $\times$ 1.841.cg. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.f_cg | $2$ | (not in LMFDB) |