Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 35 x^{2} + 1369 x^{4}$ |
| Frobenius angles: | $\pm0.328409589862$, $\pm0.671590410138$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{39}, \sqrt{-109})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $40$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1405$ | $1974025$ | $2565625540$ | $3518156705625$ | $4808584459438525$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $38$ | $1440$ | $50654$ | $1877188$ | $69343958$ | $2565524670$ | $94931877134$ | $3512482372228$ | $129961739795078$ | $4808584546459200$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):
- $y^2=26 x^6+28 x^5+15 x^4+29 x^3+32 x^2+33 x+15$
- $y^2=15 x^6+19 x^5+30 x^4+21 x^3+27 x^2+29 x+30$
- $y^2=22 x^6+32 x^5+32 x^4+5 x^3+2 x^2+5 x+19$
- $y^2=7 x^6+27 x^5+27 x^4+10 x^3+4 x^2+10 x+1$
- $y^2=6 x^6+18 x^5+34 x^4+25 x^3+22 x^2+9 x+22$
- $y^2=12 x^6+36 x^5+31 x^4+13 x^3+7 x^2+18 x+7$
- $y^2=2 x^6+x^5+6 x^4+10 x^3+24 x^2+28 x+24$
- $y^2=4 x^6+2 x^5+12 x^4+20 x^3+11 x^2+19 x+11$
- $y^2=4 x^6+2 x^5+2 x^4+10 x^3+35 x^2+15 x+33$
- $y^2=8 x^6+4 x^5+4 x^4+20 x^3+33 x^2+30 x+29$
- $y^2=18 x^6+12 x^5+6 x^4+36 x^3+36 x^2+25 x+3$
- $y^2=19 x^6+x^5+23 x^4+32 x^3+12 x^2+3 x+4$
- $y^2=15 x^6+35 x^5+11 x^4+23 x^3+22 x^2+29 x+9$
- $y^2=8 x^6+15 x^5+14 x^4+31 x^3+27 x^2+35 x+15$
- $y^2=16 x^6+30 x^5+28 x^4+25 x^3+17 x^2+33 x+30$
- $y^2=9 x^6+25 x^5+10 x^4+x^3+33 x^2+23 x+27$
- $y^2=18 x^6+13 x^5+20 x^4+2 x^3+29 x^2+9 x+17$
- $y^2=30 x^6+10 x^5+13 x^4+23 x^3+x^2+5 x+1$
- $y^2=23 x^6+20 x^5+26 x^4+9 x^3+2 x^2+10 x+2$
- $y^2=2 x^6+20 x^5+19 x^4+30 x^3+8 x^2+x+26$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37^{2}}$.
Endomorphism algebra over $\F_{37}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{39}, \sqrt{-109})\). |
| The base change of $A$ to $\F_{37^{2}}$ is 1.1369.bj 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-4251}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.37.a_abj | $4$ | (not in LMFDB) |